About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 495708, 11 pages
http://dx.doi.org/10.1155/2013/495708
Review Article

Electrospinning of Nanofibers for Tissue Engineering Applications

1Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Xue Yuan Road No. 37, Haidian District, Beijing 100191, China
2Orthopaedic Department, First Affiliated Hospital, PLA General Hospital, Beijing 100048, China

Received 9 June 2013; Accepted 26 June 2013

Academic Editor: Xiaoming Li

Copyright © 2013 Haifeng Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. H. Reneker and I. Chun, “Nanometre diameter fibres of polymer, produced by electrospinning,” Nanotechnology, vol. 7, no. 3, pp. 216–223, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Formhals, “Process and apparatus for preparing artificial threads,” US Patent Specification, 1975 504, 1934.
  3. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Composites Science and Technology, vol. 63, no. 15, pp. 2223–2253, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Li and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?” Advanced Materials, vol. 16, no. 14, pp. 1151–1170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Nishida, K. Yasumoto, T. Otori, and J. Desaki, “The network structure of corneal fibroblasts in the rat as revealed by scanning electron microscopy,” Investigative Ophthalmology and Visual Science, vol. 29, no. 12, pp. 1887–1890, 1988. View at Scopus
  6. K. E. Kadler, D. F. Holmes, J. A. Trotter, and J. A. Chapman, “Collagen fibril formation,” Biochemical Journal, vol. 316, no. 1, pp. 1–11, 1996. View at Scopus
  7. X. Li, H. Liu, X. Niu et al., “The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo,” Biomaterials, vol. 33, no. 19, pp. 4818–4827, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. X. M. Li, L. Wang, Y. B. Fan, Q. L. Feng, F. Z. Cui, and F. Watari, “Nanostructured scaffolds for bone tissue engineering,” Journal of Biomedical Materials Research A, vol. 101, no. 8, pp. 2424–2435, 2013. View at Publisher · View at Google Scholar
  9. X. Li, H. Gao, M. Uo et al., “Effect of carbon nanotubes on cellular functions in vitro,” Journal of Biomedical Materials Research A, vol. 91, no. 1, pp. 132–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. C. T. Laurencin, A. M. A. Ambrosio, M. D. Borden, and J. A. Cooper Jr., “Tissue engineering: orthopedic applications,” Annual Review of Biomedical Engineering, no. 1, pp. 19–46, 1999. View at Scopus
  11. T. J. Sill and H. A. von Recum, “Electrospinning: applications in drug delivery and tissue engineering,” Biomaterials, vol. 29, no. 13, pp. 1989–2006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. W. E. Teo and S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies,” Nanotechnology, vol. 17, no. 14, pp. R89–R106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. L. Yarin, S. Koombhongse, and D. H. Reneker, “Bending instability in electrospinning of nanofibers,” Journal of Applied Physics, vol. 89, no. 5, pp. 3018–3026, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. G. H. Kim, “Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold,” Biomedical Materials, vol. 3, no. 2, p. 25010, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Kim and W. Kim, “Formation of oriented nanofibers using electrospinning,” Applied Physics Letters, vol. 88, no. 23, Article ID 233101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Lannutti, D. Reneker, T. Ma, D. Tomasko, and D. Farson, “Electrospinning for tissue engineering scaffolds,” Materials Science and Engineering C, vol. 27, no. 3, pp. 504–509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Burger, B. S. Hsiao, and B. Chu, “Nanofibrous materials and their applications,” Annual Review of Materials Research, vol. 36, pp. 333–368, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. S. J. Tucka, M. K. Leacha, Z. Q. Feng, and J. M. Coreya, “Critical variables in the alignment of electrospun PLLA nanofibers,” Materials Science and Engineering C, vol. 32, no. 7, pp. 1779–1784, 2012. View at Publisher · View at Google Scholar
  19. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer, vol. 43, no. 16, pp. 4403–4412, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Wang, H.-J. Jin, D. L. Kaplan, and G. C. Rutledge, “Mechanical properties of electrospun silk fibers,” Macromolecules, vol. 37, no. 18, pp. 6856–6864, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Wang, R. Gao, P.-P. Wang et al., “The differential effects of aligned electrospun PHBHHx fibers on adipogenic and osteogenic potential of MSCs through the regulation of PPARγ signaling,” Biomaterials, vol. 33, no. 2, pp. 485–493, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Doshi and D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” Journal of Electrostatics, vol. 35, no. 2-3, pp. 151–160, 1995. View at Scopus
  23. L. Soffer, X. Wang, X. Zhang et al., “Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts,” Journal of Biomaterials Science, Polymer Edition, vol. 19, no. 5, pp. 653–664, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. J.-H. He, L. Xu, Y. Wu, and Y. Liu, “Mathematical models for continuous electrospun nanofibers and electrospun nanoporous microspheres,” Polymer International, vol. 56, no. 11, pp. 1323–1329, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. Y.-Q. Wan, Q. Guo, and N. Pan, “Thermo-electro-hydrodynamic model for electrospinning process,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 5, no. 1, pp. 5–8, 2004. View at Scopus
  26. X. Li, Q. Feng, X. Liu, W. Dong, and F. Cui, “Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model,” Biomaterials, vol. 27, no. 9, pp. 1917–1923, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Yang, C. F. C. Fitié, K. O. van der Werf, M. L. Bennink, P. J. Dijkstra, and J. Feijen, “Mechanical properties of single electrospun collagen type I fibers,” Biomaterials, vol. 29, no. 8, pp. 955–962, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Li, C. A. van Blitterswijk, Q. Feng, F. Cui, and F. Watari, “The effect of calcium phosphate microstructure on bone-related cells in vitro,” Biomaterials, vol. 29, no. 23, pp. 3306–3316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Zhang, H. Ouyang, T. L. Chwee, S. Ramakrishna, and Z.-M. Huang, “Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds,” Journal of Biomedical Materials Research B Applied Biomaterials, vol. 72, no. 1, pp. 156–165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. A. Kiechel and C. L. Schauer, “Non-covalent crosslinkers for electrospun chitosan fibers,” Carbohydrate Polymers, vol. 95, no. 1, pp. 123–133, 2013. View at Publisher · View at Google Scholar
  31. X. M. Li, Y. Huang, L. S. Zheng et al., “Effect of substrate stiffness on the functions of rat bone marrow and adipose tissue derived mesenchymal stem cells in vitro,” Journal of Biomedical Materials Research A, 2013. View at Publisher · View at Google Scholar
  32. S. Putthanarat, R. K. Eby, W. Kataphinan et al., “Electrospun Bombyx mori gland silk,” Polymer, vol. 47, no. 15, pp. 5630–5632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Rnjak-Kovacina, S. G. Wise, Z. Li et al., “Electrospun synthetic human elastin: collagen composite scaffolds for dermal tissue engineering,” Acta Biomaterialia, vol. 8, no. 10, pp. 3714–3722, 2012. View at Publisher · View at Google Scholar
  34. W. D. Holder, H. E. Gruber, A. L. Moore et al., “Cellular ingrowth and thickness changes in poly-L-lactide and polyglycolide matrices implanted subcutaneously in the rat,” Journal of Biomedical Materials Research, vol. 41, no. 3, pp. 412–421, 1998. View at Publisher · View at Google Scholar
  35. R. A. Jain, “The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices,” Biomaterials, vol. 21, no. 23, pp. 2475–2490, 2000. View at Scopus
  36. L. Lu, S. J. Peter, M. D. Lyman et al., “In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams,” Biomaterials, vol. 21, no. 18, pp. 1837–1845, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. M. J. McClure, S. A. Sell, D. G. Simpson, B. H. Walpoth, and G. L. Bowlin, “A three-layered electrospun matrix to mimic native arterial architecture using polycaprolactone, elastin, and collagen: a preliminary study,” Acta Biomaterialia, vol. 6, no. 7, pp. 2422–2433, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. X. M. Li, Y. Yang, Y. B. Fan, Q. L. Feng, F. Z. Cui, and F. Watari, “Biocomposites reinforced by fibers or tubes, as scaffolds for tissue engineering or regenerative medicine,” Journal of Biomedical Materials Research A, 2013. View at Publisher · View at Google Scholar
  39. Y. Dror, W. Salalha, R. L. Khalfin, Y. Cohen, A. L. Yarin, and E. Zussman, “Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning,” Langmuir, vol. 19, no. 17, pp. 7012–7020, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. J. J. Ge, H. Hou, Q. Li et al., “Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets,” Journal of the American Chemical Society, vol. 126, no. 48, pp. 15754–15761, 2004. View at Scopus
  41. X. Geng, O.-H. Kwon, and J. Jang, “Electrospinning of chitosan dissolved in concentrated acetic acid solution,” Biomaterials, vol. 26, no. 27, pp. 5427–5432, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, “Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering,” Tissue Engineering, vol. 10, no. 7-8, pp. 1160–1168, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Venugopal, L. L. Ma, T. Yong, and S. Ramakrishna, “In vitro study of smooth muscle cells on polycaprolactone and collagen nanofibrous matrices,” Cell Biology International, vol. 29, no. 10, pp. 861–867, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. J. J. Stankus, J. Guan, K. Fujimoto, and W. R. Wagner, “Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix,” Biomaterials, vol. 27, no. 5, pp. 735–744, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Xu, F. Yang, S. Wang, and S. Ramakrishna, “In vitro study of human vascular endothelial cell function on materials with various surface roughness,” Journal of Biomedical Materials Research A, vol. 71, no. 1, pp. 154–161, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. I. Keun Kwon, S. Kidoaki, and T. Matsuda, “Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential,” Biomaterials, vol. 26, no. 18, pp. 3929–3939, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. I. K. Kwon and T. Matsuda, “Co-electrospun nanofiber fabrics of poly(L-lactide-co-ε-caprolactone) with type I collagen or heparin,” Biomacromolecules, vol. 6, no. 4, pp. 2096–2105, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. X. Zhang, V. Thomas, Y. Xu, S. L. Bellis, and Y. K. Vohra, “An in vitro regenerated functional human endothelium on a nanofibrous electrospun scaffold,” Biomaterials, vol. 31, no. 15, pp. 4376–4381, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. X. Zhang, X. Wang, V. Keshav et al., “Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts,” Biomaterials, vol. 30, no. 19, pp. 3213–3223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Liu, X. Li, G. Zhou, H. Fan, and Y. Fan, “Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering,” Biomaterials, vol. 32, no. 15, pp. 3784–3793, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Liu, X. Li, X. Niu, G. Zhou, P. Li, and Y. Fan, “Improved hemocompatibility and endothelialization of vascular grafts by covalent immobilization of sulfated silk fibroin on poly(lactic-co-glycolic acid) scaffolds,” Biomacromolecules, vol. 12, no. 8, pp. 2914–2924, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. H. F. Liu, X. L. Ding, Y. X. Bi et al., “In vitro evaluation of combined sulfated silk fibroin scaffolds for vascular cell growth,” Macromolecular Bioscience, vol. 13, no. 6, pp. 755–766, 2013. View at Publisher · View at Google Scholar
  53. J. D. Stitzel, K. J. Pawlowski, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, “Arterial smooth muscle cell proliferation on a novel biomimicking, biodegradable vascular graft scaffold,” Journal of Biomaterials Applications, vol. 16, no. 1, pp. 22–33, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Stitzel, J. Liu, S. J. Lee et al., “Controlled fabrication of a biological vascular substitute,” Biomaterials, vol. 27, no. 7, pp. 1088–1094, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. Morshed, M.-H. Nasr-Esfahani, and S. Ramakrishna, “Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering,” Biomaterials, vol. 29, no. 34, pp. 4532–4539, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. T. B. Bini, S. Gao, S. Wang, and S. Ramakrishna, “Poly(l-lactide-co-glycolide) biodegradable microfibers and electrospun nanofibers for nerve tissue engineering: an in vitro study,” Journal of Materials Science, vol. 41, no. 19, pp. 6453–6459, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Schnell, K. Klinkhammer, S. Balzer et al., “Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend,” Biomaterials, vol. 28, no. 19, pp. 3012–3025, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. C. H. Lee, H. J. Shin, I. H. Cho et al., “Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast,” Biomaterials, vol. 26, no. 11, pp. 1261–1270, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Murugan and S. Ramakrishna, “Design strategies of tissue engineering scaffolds with controlled fiber orientation,” Tissue Engineering, vol. 13, no. 8, pp. 1845–1866, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, “Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering,” Biomaterials, vol. 26, no. 15, pp. 2603–2610, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. M. P. Prabhakaran, J. R. Venugopal, and S. Ramakrishna, “Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering,” Biomaterials, vol. 30, no. 28, pp. 4996–5003, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. J. D. Kretlow and A. G. Mikos, “Review: mineralization of synthetic polymer scaffolds for bone tissue engineering,” Tissue Engineering, vol. 13, no. 5, pp. 927–938, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. H.-W. Kim, H.-H. Lee, and J. C. Knowles, “Electrospinning biomedical nanocomposite fibers of hydroxyapaite/poly(lactic acid) for bone regeneration,” Journal of Biomedical Materials Research A, vol. 79, no. 3, pp. 643–649, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. W. Cui, X. Li, S. Zhou, and J. Weng, “In situ growth of hydroxyapatite within electrospun poly(DL-lactide) fibers,” Journal of Biomedical Materials Research A, vol. 82, no. 4, pp. 831–841, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. W. Cui, X. Li, J. Chen, S. Zhou, and J. Weng, “In situ growth kinetics of hydroxyapatite on electrospun poly(DL-lactide) fibers with gelatin grafted,” Crystal Growth and Design, vol. 8, no. 12, pp. 4576–4582, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. C. Li, C. Vepari, H.-J. Jin, H. J. Kim, and D. L. Kaplan, “Electrospun silk-BMP-2 scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 16, pp. 3115–3124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. Zhang, J. R. Venugopal, A. El-Turki, S. Ramakrishna, B. Su, and C. T. Lim, “Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering,” Biomaterials, vol. 29, no. 32, pp. 4314–4322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. W.-J. Li, K. G. Danielson, P. G. Alexander, and R. S. Tuan, “Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(ε-caprolactone) scaffolds,” Journal of Biomedical Materials Research A, vol. 67, no. 4, pp. 1105–1114, 2003. View at Scopus
  69. J. X. Xue, B. Feng, R. Zheng et al., “Engineering ear-shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone,” Biomaterials, vol. 34, no. 11, pp. 2624–2631, 2013. View at Publisher · View at Google Scholar
  70. H. W. Ouyang, J. C. H. Goh, A. Thambyah, S. H. Teoh, and E. H. Lee, “Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit achilles tendon,” Tissue Engineering, vol. 9, no. 3, pp. 431–439, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Sahoo, H. Ouyang, C.-H. James, T. E. Tay, and S.-L. Toh, “Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering,” Tissue Engineering, vol. 12, no. 1, pp. 91–99, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. C. H. Lee, H. J. Shin, I. H. Cho et al., “Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast,” Biomaterials, vol. 26, no. 11, pp. 1261–1270, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Samavedi, S. A. Guelcher, A. S. Goldstein, and A. R. Whittington, “Response of bone marrow stromal cells to graded co-electrospun scaffolds and its implications for engineering the ligament-bone interface,” Biomaterials, vol. 33, no. 31, pp. 7727–7735, 2012. View at Publisher · View at Google Scholar
  74. Y. Dror, W. Salalha, R. Avrahami et al., “One-step production of polymeric microtubes by co-electrospinning,” Small, vol. 3, no. 6, pp. 1064–1073, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Li, B. Sun, X. Li, and X. Yuan, “Characterization of electrospun core/shell poly(vinyl pyrrolidone)/poly(L-lactide-co-ε-caprolactone) fibrous membranes and their cytocompatibility in vitro,” Journal of Biomaterials Science, Polymer Edition, vol. 19, no. 2, pp. 245–258, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Zilberman and J. J. Elsner, “Antibiotic-eluting medical devices for various applications,” Journal of Controlled Release, vol. 130, no. 3, pp. 202–215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Zilberman and A. Kraitzer, “Paclitaxel-eluting composite fibers: drug release and tensile mechanical properties,” Journal of Biomedical Materials Research A, vol. 84, no. 2, pp. 313–323, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. I. C. Liao, S. Y. Chew, and K. W. Leong, “Aligned core-shell nanofibers delivering bioactive proteins,” Nanomedicine, vol. 1, no. 4, pp. 465–471, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. J. T. McCann, D. Li, and Y. Xia, “Electrospinning of nanofibers with core-sheath, hollow, or porous structures,” Journal of Materials Chemistry, vol. 15, no. 7, pp. 735–738, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. J. T. McCann, M. Marquez, and Y. Xia, “Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers,” Nano Letters, vol. 6, no. 12, pp. 2868–2872, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. H. Jiang, P. Zhao, and K. Zhu, “Fabrication and characterization of zein-based nanofibrous scaffolds by an electrospinning method,” Macromolecular Bioscience, vol. 7, no. 4, pp. 517–525, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. J. P. F. Lagerwall, J. T. McCann, E. Formo, G. Scalia, and Y. Xia, “Coaxial electrospinning of microfibres with liquid crystal in the core,” Chemical Communications, no. 42, pp. 5420–5422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Xie, S. T. Ruo, and C.-H. Wang, “Biodegradable microparticles and fiber fabrics for sustained delivery of cisplatin to treat C6 glioma in vitro,” Journal of Biomedical Materials Research A, vol. 85, no. 4, pp. 897–908, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Y. Chew, J. Wen, E. K. F. Yim, and K. W. Leong, “Sustained release of proteins from electrospun biodegradable fibers,” Biomacromolecules, vol. 6, no. 4, pp. 2017–2024, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. H. Jiang, Y. Hu, P. Zhao, Y. Li, and K. Zhu, “Modulation of protein release from biodegradable core-shell structured fibers prepared by coaxial electrospinning,” Journal of Biomedical Materials Research B, Applied Biomaterials, vol. 79, no. 1, pp. 50–57, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. R. Srikar, A. L. Yarin, C. M. Megaridis, A. V. Bazilevsky, and E. Kelley, “Desorption-limited mechanism of release from polymer nanofibers,” Langmuir, vol. 24, no. 3, pp. 965–974, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. X. Jia, C. Zhao, P. Li et al., “Sustained release of VEGF by coaxial electrospun dextran/PLGA fibrous membranes in vascular tissue engineering,” Journal of Biomaterials Science, Polymer Edition, vol. 22, no. 13, pp. 1811–1827, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. X. M. Li, L. Wang, Y. B. Fan, Q. L. Feng, and F. Z. Cui, “Biocompatibility and toxicity of nanoparticles and nanotubes,” Journal of Nanomaterials, vol. 2012, Article ID 548389, 19 pages, 2012. View at Publisher · View at Google Scholar