About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 496584, 11 pages
http://dx.doi.org/10.1155/2013/496584
Research Article

Mechanical Properties of Natural Rubber Nanocomposites Filled with Thermally Treated Attapulgite

1College of Material Science and Engineering, Donghua University, Shanghai 201620, China
2College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

Received 20 July 2013; Accepted 19 August 2013

Academic Editor: Shanfeng Wang

Copyright © 2013 Jihu Wang and Dajun Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. W. Stöckelhuber, A. Das, R. Jurk, and G. Heinrich, “Contribution of physico-chemical properties of interfaces on dispersibility, adhesion and flocculation of filler particles in rubber,” Polymer, vol. 51, no. 9, pp. 1954–1963, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Merckel, J. Diani, M. Brieu, and J. Caillard, “Effects of the amount of fillers and of the crosslink density on the mechanical behavior of carbon-black filled styrene butadiene rubbers,” Journal of Applied Polymer Science, vol. 129, no. 4, pp. 2086–2091, 2013.
  3. H. Nabil, H. Ismail, and A. R. Azura, “Compounding, mechanical and morphological properties of carbon-black-filled natural rubber/recycled ethylene-propylene-diene-monomer (NR/R-EPDM) blends,” Polymer Testing, vol. 32, no. 2, pp. 385–393, 2013.
  4. S. Agnelli, G. Ramorino, S. Passera, J. Karger-Kocsis, and T. Ricco, “Fracture resistance of rubbers with MWCNT, organoclay, silica and carbon black fillers as assessed by the J-integral: effects of rubber type and filler concentration,” Express Polymer Letters, vol. 6, no. 7, pp. 581–587, 2012.
  5. Z. Peng, L. X. Kong, S.-D. Li, Y. Chen, and M. F. Huang, “Self-assembled natural rubber/silica nanocomposites: its preparation and characterization,” Composites Science and Technology, vol. 67, no. 15-16, pp. 3130–3139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. C. A. Rezende, F. C. Bragança, T. R. Doi, L.-T. Lee, F. Galembeck, and F. Boué, “Natural rubber-clay nanocomposites: mechanical and structural properties,” Polymer, vol. 51, no. 16, pp. 3644–3652, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. N. Qureshi and H. Qammar, “Mill processing and properties of rubber-clay nanocomposites,” Materials Science and Engineering C, vol. 30, no. 4, pp. 590–596, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Lagazzo, S. Lenzi, R. Botter, P. Cirillo, F. Demicheli, and D. T. Beruto, “A rheological method for selecting nano-kaolin powder as filler in SBR rubber,” Particuology, vol. 8, no. 3, pp. 245–250, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Zhang, Q. Liu, Q. Zhang, and Y. Lu, “Gas barrier properties of natural rubber/kaolin composites prepared by melt blending,” Applied Clay Science, vol. 50, no. 2, pp. 255–259, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Ľalíková, M. Pajtášová, M. Chromčíková et al., “Investigation of natural rubber composites with addition of montmorillonite fillers using thermal analysis,” Journal of Thermal Analysis and Calorimetry, vol. 104, no. 3, pp. 969–973, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. M. Jia, S. J. Chen, and J. Zhang, “RTV silicone rubber filled with surface modified montmorillonite,” Journal of Macromolecular Science B, no. 51, pp. 2449–2461, 2012.
  12. Q. Fu, L. Chen, K. Liu, F. Chen, and T. X. Jin, “Rod like attapulgite/poly(ethylene terephthalate) nanocomposites with chemical bonding between the polymer chain and the filler,” EXPRESS Polymer Letters, vol. 6, no. 8, pp. 629–638, 2012.
  13. N. A. Azahari, N. Othman, and H. Ismail, “Effect of attapulgite clay on biodegradability and tensile properties of polyvinyl alcohol/corn starch blend film international,” Journal of Polymeric Materials, no. 61, pp. 1065–1078, 2012.
  14. J. Shi, X. Yang, Q. Han, X. Wang, and L. Lu, “Polyurethane grafted attapulgite as novel fillers for nylon 6 nanocomposites,” Journal Wuhan University of Technology, Materials Science Edition, vol. 26, no. 4, pp. 615–619, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. R. M. B. Fernandes, L. L. Y. Visconte, and R. C. R. Nunes, “Characteristics of acrylic rubber composites with mica and carbon black,” Journal of Elastomers and Plastics, vol. 42, no. 1, pp. 65–74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. W. F. Bradley, “The structural scheme of attapulgite,” American Mineralogist, vol. 25, no. 6, pp. 405–410, 1940.
  17. P. Liu and T. Wang, “Adsorption properties of hyperbranched aliphatic polyester grafted attapulgite towards heavy metal ions,” Journal of Hazardous Materials, vol. 149, no. 1, pp. 75–79, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Zhang, Q. Wang, and A. Wang, “Synthesis and characterization of chitosan-g-poly(acrylic acid)/attapulgite superabsorbent composites,” Carbohydrate Polymers, vol. 68, no. 2, pp. 367–374, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. C. H. Chen, “Effect of attapulgite on the crystallization behavior and mechanical properties of poly(butylene succinate) nanocomposites,” Journal of Physics and Chemistry of Solids, vol. 69, no. 5-6, pp. 1411–1414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Chen, Y. Zhao, S. Zhou, X. Chu, L. Yang, and W. Xing, “Preparation and characterization of polyacrylamide/palygorskite,” Applied Clay Science, vol. 46, no. 2, pp. 148–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Tian, W. Liang, G. Rao, L. Zhang, and C. Guo, “Surface modification of fibrillar silicate and its reinforcing mechanism on FS/rubber composites,” Composites Science and Technology, vol. 65, no. 7-8, pp. 1129–1138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Huang, Y. Liu, and X. Wang, “Influence of differently modified palygorskites in the immobilization of a lipase,” Journal of Molecular Catalysis B, vol. 55, no. 1-2, pp. 49–54, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Zhang, H. Chen, and A. Wang, “Study on superabsorbent composite. III. Swelling behaviors of polyacrylamide/attapulgite composite based on acidified attapulgite and organo-attapulgite,” European Polymer Journal, vol. 41, no. 10, pp. 2434–2442, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. I. Jin, J. Chen, and Y. H. Qian, “The methodology and mechanism analysis of stearic acid-modified attapulgite reinforcing polyurethane leather,” Journal of Wuhan University of Technology, vol. 27, no. 12, pp. 9–13, 2005.
  25. Y. Xiang, Z. Peng, and D. Chen, “A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties,” European Polymer Journal, vol. 42, no. 9, pp. 2125–2132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Liu, P. Liu, Z. Su, F. Li, and F. Wen, “Attapulgite-Fe3O4 magnetic nanoparticles via co-precipitation technique,” Applied Surface Science, vol. 255, no. 5, pp. 2020–2025, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Liu, P. Liu, and Z. Su, “Core-shell attapulgite@polyaniline composite particles via in situ oxidative polymerization,” Synthetic Metals, vol. 157, no. 13–15, pp. 585–591, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Q. Lai, T. S. Li, X. J. Liu, R. G. Lv, and L. Yue, “The tribological properties of PTFE filled with thermally treated nano-attapulgite,” Tribology International, vol. 39, no. 6, pp. 541–547, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Lai, L. Yue, X. Zhao, and L. Gao, “Preparation of silica powder with high whiteness from palygorskite,” Applied Clay Science, vol. 50, no. 3, pp. 432–437, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Gan, J. Zhou, H. Wang, C. Du, and X. Chen, “Removal of phosphate from aqueous solution by thermally treated natural palygorskite,” Water Research, vol. 43, no. 11, pp. 2907–2915, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. V. Vágvölgyi, L. M. Daniel, C. Pinto, J. Kristóf, R. L. Frost, and E. Horváth, “Dynamic and controlled rate thermal analysis of attapulgite,” Journal of Thermal Analysis and Calorimetry, vol. 92, no. 2, pp. 589–594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Lokanatha, B. K. Mathur, B. K. Samantaray, and S. Bhattacherjee, “Dehydration and phase transformation in attapulgite (palygorskite)—an R.D.F. study,” Journal of Materials Science Letters, vol. 3, no. 12, pp. 1105–1108, 1984. View at Publisher · View at Google Scholar · View at Scopus
  33. R. L. Frost, G. A. Cash, and J. T. Kloprogge, “'Rocky Mountain leather', sepiolite and attapulgite—an infrared emission spectroscopic study,” Vibrational Spectroscopy, vol. 16, no. 2-3, pp. 173–184, 1998. View at Scopus
  34. R. L. Frost, O. B. Locos, H. Ruan, and J. T. Kloprogge, “Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites,” Vibrational Spectroscopy, vol. 27, no. 1, pp. 1–13, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Tartaglione, D. Tabuani, and G. Camino, “Thermal and morphological characterisation of organically modified sepiolite,” Microporous and Mesoporous Materials, vol. 107, no. 1-2, pp. 161–168, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Chen, J. Wang, C. Qing, S. Peng, Y. Song, and Y. Guo, “Effect of heat treatment on structure, morphology and surface properties of palygorskite,” Journal of the Chinese Ceramic Society, vol. 34, no. 11, pp. 1406–1410, 2006. View at Scopus
  37. B. Xu, W. M. Huang, Y. T. Pei et al., “Mechanical properties of attapulgite clay reinforced polyurethane shape-memory nanocomposites,” European Polymer Journal, vol. 45, no. 7, pp. 1904–1911, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. H. Huang, Y. F. Liu, Q. Z. Jin, and X. G. Wang, “Spectra study on the influence of drying process on palygorskite structure,” Spectroscopy and Spectral Analysis, vol. 27, no. 2, pp. 408–410, 2007.
  39. J. Madejová, “FTIR techniques in clay mineral studies,” Vibrational Spectroscopy, vol. 31, no. 1, pp. 1–10, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. R. L. Frost and Z. Ding, “Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites,” Thermochimica Acta, vol. 397, no. 1-2, pp. 119–128, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. D. M. Araújo Melo, J. A. C. Ruiz, M. A. F. Melo, E. V. Sobrinho, and A. E. Martinelli, “Preparation and characterization of lanthanum palygorskite clays as acid catalysts,” Journal of Alloys and Compounds, vol. 344, no. 1-2, pp. 352–355, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. D. M. A. Melo, J. A. C. Ruiz, M. A. F. Melo, E. V. Sobrinho, and M. Schmall, “Preparation and characterization of terbium palygorskite clay as acid catalyst,” Microporous and Mesoporous Materials, vol. 38, no. 2-3, pp. 345–349, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. M. M. Saatchi and A. Shojaei, “Effect of carbon-based nanoparticles on the cure characteristics and network structure of styrene-butadiene rubber vulcanizate,” Polymer International, vol. 61, no. 4, pp. 664–672, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Vojislav, S. J. Suzana, B. S. Jaroslava, M. Gordana, and M. C. Milena, “Composites based on carbon black reinforced NBR/EPDM rubber blends,” Composites Part B, vol. 45, no. 1, pp. 333–340, 2013.
  45. H. Ismail, H. D. Rozman, R. M. Jaffri, and Z. A. Mohd Ishak, “Oil palm wood flour reinforced epoxidized natural rubber composites: the effect of filler content and size,” European Polymer Journal, vol. 33, no. 10–12, pp. 1627–1632, 1997. View at Scopus
  46. H. Ismail, H. Osman, and A. Ariffin, “A comparative study on curing characteristics, mechanical properties, swelling behavior, thermal stability, and morphology of feldspar and silica in SMR L vulcanizates,” Polymer, vol. 43, no. 5, pp. 1323–1344, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Chen, M. Zheng, H. Sun, and Q. Jia, “Characterization and properties of sepiolite/polyurethane nanocomposites,” Materials Science and Engineering A, vol. 445-446, pp. 725–730, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Prasertsri and N. Rattanasom, “Fumed and precipitated silica reinforced natural rubber composites prepared from latex system: mechanical and dynamic properties,” Polymer Testing, vol. 31, no. 5, pp. 593–605, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Sahakaro and S. Beraheng, “Reinforcement of maleated natural rubber by precipitated silica,” Journal of Applied Polymer Science, vol. 109, no. 6, pp. 3839–3848, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. Z. X. Ooi, H. Ismail, and A. A. Bakar, “Synergistic effect of oil palm ash filled natural rubber compound at low filler loading,” Polymer Testing, vol. 32, no. 1, pp. 38–44, 2013.
  51. T. Pojanavaraphan, D. A. Schiraldi, and R. Magaraphan, “Mechanical, rheological, and swelling behavior of natural rubber/montmorillonite aerogels prepared by freeze-drying,” Applied Clay Science, vol. 50, no. 2, pp. 271–279, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Fragiadakis, L. Bokobza, and P. Pissis, “Dynamics near the filler surface in natural rubber-silica nanocomposites,” Polymer, vol. 52, no. 14, pp. 3175–3182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. J. P. Rath, T. K. Chaki, and D. Khastgir, “Development of natural rubber-fibrous nano clay attapulgite composites: the effect of chemical treatment of filler on mechanical and dynamic mechanical properties of composites,” Procedia Chemistry, vol. 4, pp. 131–137, 2012.
  54. N. Volle, F. Giulieri, A. Burr, S. Pagnotta, and A. M. Chaze, “Controlled interactions between silanol groups at the surface of sepiolite and an acrylate matrix: consequences on the thermal and mechanical properties,” Materials Chemistry and Physics, vol. 134, no. 1, pp. 417–424, 2012. View at Publisher · View at Google Scholar · View at Scopus