About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 514917, 8 pages
http://dx.doi.org/10.1155/2013/514917
Research Article

Efficient Removal of Cr(VI) with Fe/Mn Mixed Metal Oxide Nanocomposites Synthesized by a Grinding Method

1Center for Energy Conservation Technology, School of Engineering, Sun Yat-sen University, Guangzhou 510006, China
2Department of Chemistry, School of Life Science and Technology, Jinan University, Guangzhou 510632, China

Received 5 January 2013; Accepted 13 February 2013

Academic Editor: Huijun Wu

Copyright © 2013 Wang Weilong and Fu Xiaobo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Zamzow, B. R. Eichbaum, K. R. Sandgren, and D. E. Shanks, “Removal of heavy metals and other cations from wastewater using zeolites,” Separation Science and Technology, vol. 25, no. 13–15, pp. 1555–1569, 1990. View at Scopus
  2. R. J. Crawford, I. H. Harding, and D. E. Mainwaring, “Adsorption and coprecipitation of multiple heavy metal ions onto the hydrated oxides of iron and chromium,” Langmuir, vol. 9, no. 11, pp. 3057–3062, 1993. View at Scopus
  3. S. R. Qiu, H. F. Lai, M. J. Roberson et al., “Removal of contaminants from aqueous solution by reaction with iron surfaces,” Langmuir, vol. 16, no. 5, pp. 2230–2236, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Apak, E. Tütem, M. Hügül, and J. Hizal, “Heavy metal cation retention by unconventional sorbents (red muds and fly ashes),” Water Research, vol. 32, no. 2, pp. 430–440, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Ballav, A. Maity, and S. B. Mishra, “High efficient removal of chromium(VI) using glycine doped polypyrrole adsorbent from aqueous solution,” Chemical Engineering Journal, vol. 198, pp. 536–546, 2012.
  6. S. R. Singh and A. P. Singh, “Treatment of water containg chromium (VI) using rice husk carbon as a newlow cost adsorbent,” International Journal of Environmental Research, vol. 6, pp. 917–924, 2012.
  7. J. Wang, L. Zhao, W. J. Duan, L. L. Han, and Y. F. Chen, “Adsorption of aqueous Cr(VI) by novel fibrous adsorbent with amino and quaternary ammonium groups,” Industrial & Engineering Chemistry Research, vol. 51, pp. 13655–13662, 2012.
  8. S. J. Ergas, B. M. Therriault, and D. A. Reckhow, “Evaluation of water reuse technologies for the textile industry,” Journal of Environmental Engineering, vol. 132, no. 3, pp. 315–323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. R. Chowdhury, E. K. Yanful, and A. R. Pratt, “Chemical states in XPS and Raman analysis during removal of Cr(VI) from contaminated water by mixed maghemite-magnetite nanoparticles,” Journal of Hazardous Materials, vol. 235, pp. 246–256, 2012.
  10. D. C. Sharma and C. F. Forster, “Removal of hexavalent chromium from aqueous solutions by granular activated carbon,” Water SA, vol. 22, no. 1, pp. 153–160, 1996. View at Scopus
  11. Y. S. Ho, D. A. J. Wase, and C. F. Forster, “Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat,” Environmental Technology, vol. 17, no. 1, pp. 71–77, 1996. View at Scopus
  12. H. C. P. Srivastava, R. P. Mathur, and I. Mehrotra, “Removal of chromium from industrial effluent by adsorption on sawdust,” Environmental Technology Letters, vol. 7, no. 1, pp. 55–63, 1986.
  13. L. S. Zhong, J. S. Hu, H. P. Liang, A. M. Cao, W. G. Song, and L. J. Wan, “Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment,” Advanced Materials, vol. 18, no. 18, pp. 2426–2848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. L. S. Zhong, J. S. Hu, A. M. Cao, Q. Liu, W. G. Song, and L. J. Wan, “3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal,” Chemistry of Materials, vol. 19, no. 7, pp. 1648–1655, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Hu, G. Chen, and I. M. C. Lo, “Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms,” Journal of Environmental Engineering, vol. 132, no. 7, pp. 709–715, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Hu, G. Chen, and I. M. C. Lo, “Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles,” Water Research, vol. 39, no. 18, pp. 4528–4536, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Hu, I. M. C. Lo, and G. Chen, “Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles,” Langmuir, vol. 21, no. 24, pp. 11173–11179, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Hu, I. M. C. Lo, and G. Chen, “Performance and mechanism of chromate (VI) adsorption by δ-FeOOH-coated maghemite (γ-Fe2O3) nanoparticles,” Separation and Purification Technology, vol. 58, no. 1, pp. 76–82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. V. V. Molchanov and R. A. Buyanov, “Mechanochemistry of catalysts,” Russian Chemical Reviews, vol. 69, no. 5, pp. 435–450, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Muthukumaran, N. Balasubramanian, and T. V. Ramakrishna, “Removal and recovery of chromium from plating waste using chemically activated carbon,” Metal Finishing, vol. 93, no. 11, pp. 46–53, 1995. View at Scopus
  21. G. Bonsdorf, K. Schäfer, K. Teske, H. Langbein, and H. Ullmann, “Stability region and oxygen stoichiometry of manganese ferrite,” Solid State Ionics, vol. 110, no. 1-2, pp. 73–82, 1998. View at Scopus
  22. Q. Li, G. Luo, J. Li, and X. Xia, “Preparation of ultrafine MnO2 powders by the solid state method reaction of KMnO4 with Mn(II) salts at room temperature,” Journal of Materials Processing Technology, vol. 137, no. 1–3, pp. 25–29, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Lu, S. Yang, K. M. Ng et al., “Solid-state synthesis of monocrystalline iron oxide nanoparticle based ferrofluid suitable for magnetic resonance imaging contrast application,” Nanotechnology, vol. 17, no. 23, pp. 5812–5820, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Ding, B. H. W. S. De Jong, S. J. Roosendaal, and A. Vredenberg, “XPS studies on the electronic structure of bonding between solid and solutes: adsorption of arsenate, chromate, phosphate, Pb2+, and Zn2+ ions on amorphous black ferric oxyhydroxide,” Geochimica et Cosmochimica Acta, vol. 64, no. 7, pp. 1209–1219, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Dimitri, G. Vladimir, and W. Abraham, Ion Exchange, Marcel Dekker, New York, NY, USA, 2000.