About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 517643, 6 pages
http://dx.doi.org/10.1155/2013/517643
Research Article

Characterization of Newly Synthesized ZrFe2O5 Nanomaterial and Investigations of Its Tremendous Photocatalytic Properties under Visible Light Irradiation

1Department of Physics, University of Agriculture, Faisalabad 38040, Pakistan
2Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
3Department of Chemistry & Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan
4Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
5Sustainable Energy Technologies (SET) Center, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia
6Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
7Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Received 7 April 2013; Revised 29 June 2013; Accepted 30 June 2013

Academic Editor: Jiaguo Yu

Copyright © 2013 Shaukat Ali Shahid et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Qu, J. Zhao, T. Shen, and H. Hidaka, “TiO2-assisted photodegradation of dyes: a study of two competitive primary processes in the degradation of RB in an aqueous TiO2 colloidal solution,” Journal of Molecular Catalysis A, vol. 129, no. 2-3, pp. 257–268, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Peralta-Zamora, S. Gomes de Moraes, R. Pelegrini et al., “Evaluation of ZnO, TiO2 and supported ZnO on the photoassisted remediation of black liquor, cellulose and textile mill effluents,” Chemosphere, vol. 36, no. 9, pp. 2119–2133, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. A. L. Linsebigler, G. Lu, and J. T. Yates Jr., “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results,” Chemical Reviews, vol. 95, no. 3, pp. 735–758, 1995. View at Scopus
  4. W. Cun, Z. Jincai, W. Xinming et al., “Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts,” Applied Catalysis B, vol. 39, no. 3, pp. 269–279, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. M. E. Manríquez, T. Lopez, R. Gomez, and J. Navarrete, “Preparation of TiO2-ZrO2 mixed oxides with controlled acid-basic properties,” Journal of Molecular Catalysis A, vol. 220, no. 2, pp. 229–237, 2004.
  6. U. I. Gaya and A. H. Abdullah, “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems,” Journal of Photochemistry and Photobiology C, vol. 9, no. 1, pp. 1–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Rajeshwar, M. E. Osugi, W. Chanmanee et al., “Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media,” Journal of Photochemistry and Photobiology C, vol. 9, no. 4, pp. 171–192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Li, Y. Hou, Q. Zhao, W. Teng, X. Hu, and G. Chen, “Capability of novel ZnFe2O4 nanotube arrays for visible-light induced degradation of 4-chlorophenol,” Chemosphere, vol. 82, no. 4, pp. 581–586, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Mehash, B. Visvanathan, R. P. Visvanath, and T. K. Vardarajan, Photoelectro—Chemistry and Photobiology in the Environment Energy and Fuel, Chapter 11, 2007.
  10. M. Shahid, I. Shakir, S.-J. Yang, and D. J. Kang, “Facile synthesis of core-shell SnO2/V2O5 nanowires and their efficient photocatalytic property,” Materials Chemistry and Physics, vol. 124, no. 1, pp. 619–622, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Naito, T. Tachikawa, M. Fujitsuka, and T. Majima, “Single-molecule observation of photocatalytic reaction in TiO2 nanotube: importance of molecular transport through porous structures,” Journal of the American Chemical Society, vol. 131, no. 3, pp. 934–936, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Rahimi, M. Rabbani, and S. S. Moghddam, “Application of N, S-codoped TiO2 photo-catalyst for degradation of methylene blue,” in Proceedings of the 16th International Conference on Synthetic Organic Chemistry (ECSOC-16 '12), November 2012.
  13. W. Fu, Y. Wang, C. He, and J. Zhao, “Photocatalytic degradation of acephate on ZnFe2O4-TiO2 photocatalyst under visible-light irradiation,” Journal of Advanced Oxidation Technologies, vol. 15, no. 1, pp. 177–182, 2012. View at Scopus
  14. I. Ullah, S. Ali, M. A. Hanif, and S. A. Shahid, “Nanoscience for environmental remediation: a review,” International Journal of Chemical and Biochemical Sciences, vol. 2, no. 1, pp. 60–77, 2012.
  15. Z. Zhang, W. Wang, E. Gao, M. Shang, and J. Xu, “Enhanced photocatalytic activity of Bi2WO6 with oxygen vacancies by zirconium doping,” Journal of Hazardous Materials, vol. 196, pp. 255–262, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Ito, K. Nishimura, and O. Miura, “Removal and recycle of phosphate from treated water of sewage plants with zirconium ferrite adsorbent by high gradient magnetic separation,” Journal of Physics, vol. 156, Article ID 012033, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Song, F. Hong, Z. He, H. Wang, X. Xu, and J. Chen, “Influence of zirconium doping on the activities of zirconium and iodine co-doped titanium dioxide in the decolorization of methyl orange under visible light irradiation,” Applied Surface Science, vol. 257, no. 23, pp. 10101–10108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. C. McManamon, J. D. Holmes, and M. A. Morris, “Improved photocatalytic degradation rates of phenol achieved using novel porous ZrO2-doped TiO2 nanoparticulate powders,” Journal of Hazardous Materials, vol. 193, pp. 120–127, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. A. A. Ashkarran, S. A. A. Afshar, S. M. Aghigh, and M. kavianipour, “Photocatalytic activity of ZrO2 nanoparticles prepared by electrical arc discharge method in water,” Polyhedron, vol. 29, no. 4, pp. 1370–1374, 2010. View at Publisher · View at Google Scholar · View at Scopus