About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 520104, 9 pages
http://dx.doi.org/10.1155/2013/520104
Research Article

Improved Thermally Grown Oxide Scale in Air Plasma Sprayed NiCrAlY/Nano-YSZ Coatings

Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

Received 26 December 2012; Accepted 13 February 2013

Academic Editor: Fathallah Karimzadeh

Copyright © 2013 Mohammadreza Daroonparvar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. R. Chen, X. Wu, B. R. Marple, and P. C. Patnaik, “Oxidation and crack nucleation/growth in an air-plasma-sprayed thermal barrier coating with NiCrAlY bond coat,” Surface & Coatings Technology, vol. 197, no. 1, pp. 109–115, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, “Mechanisms controlling the durability of thermal barrier coatings,” Progress in Materials Science, vol. 46, no. 5, pp. 505–553, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Saremi, A. Keyvani, and M. H. Sohi, “Hot corrosion resistance and mechanical behavior of atmospheric plasma sprayed conventional and nanostructured zirconia coatings,” International Journal of Modern Physics, vol. 5, no. 1, pp. 720–727, 2012. View at Publisher · View at Google Scholar
  4. Y. Bai, Z. H. Han, H. Q. Li et al., “High performance nanostructured ZrO2 based thermal barrier coatings deposited by high efficiency supersonic plasma spraying,” Applied Surface Science, vol. 257, no. 16, pp. 7210–7216, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. W. R. Chen, X. Wu, B. R. Marple, R. S. Lima, and P. C. Patnaik, “Pre-oxidation and TGO growth behaviour of an air-plasma-sprayed thermal barrier coating,” Surface & Coatings Technology, vol. 202, no. 16, pp. 3787–3796, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Y. Ni, C. Liu, H. Huang, and C. G. Zhou, “Thermal cycling behavior of thermal barrier coatings with HVOF NiCrAlY bond coat,” Thermal Spray Technology, vol. 20, no. 5, pp. 1133–1138, 2011. View at Publisher · View at Google Scholar
  7. W. R. Chen, X. Wu, D. Dudzinski, and P. C. Patnaik, “Modification of oxide layer in plasma-sprayed thermal barrier coatings,” Surface & Coatings Technology, vol. 200, no. 20-21, pp. 5863–5868, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Rabiei and A. G. Evans, “Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings,” Acta Materialia, vol. 48, no. 15, pp. 3963–3976, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Wang, C. Zhou, S. Gong, and H. Xu, “Heat treatment of nanostructured thermal barrier coating,” Ceramics International, vol. 33, no. 6, pp. 1075–1081, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Zeng, S. W. Lee, L. Gao, and C. X. Ding, “Atmospheric plasma sprayed coatings of nanostructured zirconia,” Journal of the European Ceramic Society, vol. 22, no. 3, pp. 347–351, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Zhou, F. Li, B. He, J. Wang, and B. D. Sun, “Nanostructured yttria stabilized zirconia coatings deposited by air plasma spraying,” Transactions of Nonferrous Metals Society of China, vol. 17, no. 2, pp. 389–393, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. R. Daroonparvar, M. S. Hussain, and M. M. Mat Yajid, “The role of formation of continues thermally grown oxide layer on the nanostructured NiCrAlY bond coat during thermal exposure in air,” Applied Surface Science, vol. 261, pp. 287–297, 2012. View at Publisher · View at Google Scholar
  13. Z. Chen, N. Q. Wu, J. Singh, and S. X. Mao, “Effect of Al2O3 overlay on hot-corrosion behavior of yttria-stabilized zirconia coating in molten sulfate-vanadate salt,” Thin Solid Films, vol. 443, no. 1-2, pp. 46–52, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. M. S. Hussain and M. R. Daroonparvar, “Application of granulated nano Al2O3 powders in thermal barrier coatings at elevated temperatures,” in Proceedings of the International Thermal Spray Conference (ASM International), pp. 200–205, 2012.
  15. W. R. Chen, X. Wu, B. R. Marple, and P. C. Patnaik, “The growth and influence of thermally grown oxide in a thermal barrier coating,” Surface & Coatings Technology, vol. 201, no. 3-4, pp. 1074–1079, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. Q. Wei, Z. Yin, and H. Li, “Oxidation control in plasma spraying NiCrCoAlY coating,” Applied Surface Science, vol. 258, no. 12, pp. 5094–5099, 2012. View at Publisher · View at Google Scholar
  17. E. A. G. Shillington and D. R. Clarke, “Spalling failure of a thermal barrier coating associated with aluminum depletion in the bond-coat,” Acta Materialia, vol. 47, no. 4, pp. 1297–1305, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Keyvani, M. Saremi, and M. H. Sohi, “Oxidation resistance of YSZ-alumina composites compared to normal YSZ TBC coatings at 1100C,” Journal of Alloys and Compounds, vol. 509, no. 33, pp. 8370–8377, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Y. Liang, C. Zhu, X. Y. Wu, and Y. Wu, “The formation model of Ni-Cr oxides on NiCoCrAlY-sprayed coating,” Applied Surface Science, vol. 257, no. 15, pp. 6468–6473, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. A. C. Fox and T. W. Clyne, “Oxygen transport by gas permeation through the zirconia layer in plasma sprayed thermal barrier coatings,” Surface & Coatings Technology, vol. 184, no. 2-3, pp. 311–321, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. C. R. C. Lima, N. Cinca, and J. M. Guilemany, “Study of the high temperature oxidation performance of Thermal Barrier Coatings with HVOF sprayed bond coat and incorporating a PVD ceramic interlayer,” Ceramics International, vol. 38, no. 8, pp. 6423–6429, 2012. View at Publisher · View at Google Scholar
  22. H. Jamali, R. Mozafarinia, R. S. Razavi, and R. A. Pidani, “Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings,” Ceramics International, vol. 38, no. 8, pp. 6705–6712, 2012. View at Publisher · View at Google Scholar