About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 525070, 4 pages
http://dx.doi.org/10.1155/2013/525070
Research Article

On the Phononic Bandgap of Carbon Nanotubes

1Institute of Applied Physics and Tsukuba Research Center for Interdisciplinary Materials Science, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
2Green Innovation Research Laboratory, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501, Japan

Received 14 April 2013; Accepted 4 June 2013

Academic Editor: Nadya Mason

Copyright © 2013 Kohei Yamamoto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. V. Akimov, Y. Tanaka, A. B. Pevtsov et al., “Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials,” Physical Review Letters, vol. 101, no. 3, Article ID 033902, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. C. W. Chang, D. Okawa, H. Garcia, A. Manjumdar, and A. Zettl, “Nanotube phonon waveguide,” Physical Review Letters, vol. 99, no. 4, Article ID 045901, 4 pages, 2007. View at Publisher · View at Google Scholar
  3. W. Choi, S. Hong, J. T. Abrahamson et al., “Chemically driven carbon-nanotube-guided thermopower waves,” Nature Materials, vol. 9, no. 5, pp. 423–429, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Maldovan, “Narrow low-frequency spectrum and heat management by thermocrystals,” Physical Review Letters, vol. 110, no. 2, Article ID 025902, 5 pages, 2013. View at Publisher · View at Google Scholar
  5. T. P. M. Alegre, A. Safavi-Naeini, M. Winger, and O. Painter, “Quasi-two-dimensional optomechanical crystals with a complete phononic bandgap,” Optics Express, vol. 19, no. 6, pp. 5658–5669, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. O. Sigmund and J. S. Jensen, “Systematic design of phononic band-gap materials and structures by topology optimization,” Philosophical Transactions of the Royal Society A, vol. 361, no. 1806, pp. 1001–1019, 2003. View at Publisher · View at Google Scholar
  7. G. A. Gazonas, D. S. Weile, R. Wildman, and A. Mohan, “Genetic algorithm optimization of phononic bandgap structures,” International Journal of Solids and Structures, vol. 43, no. 18-19, pp. 5851–5866, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, and E. L. Thomas, “Hypersonic phononic crystals,” Physical Review Letters, vol. 94, no. 11, Article ID 115501, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Cheng, J. Wang, U. Jonas, G. Fytas, and N. Stefanou, “Observation and tuning of hypersonic bandgaps in colloidal crystals,” Nature Materials, vol. 5, no. 10, pp. 830–836, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991. View at Scopus
  11. N. Hamada, S.-I. Sawada, and A. Oshiyama, “New one-dimensional conductors: graphitic microtubules,” Physical Review Letters, vol. 68, no. 10, pp. 1579–1581, 1992. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Electronic structure of chiral graphene tubules,” Applied Physics Letters, vol. 60, no. 18, pp. 2204–2206, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. D. W. Brenner, “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films,” Physical Review B, vol. 42, no. 15, pp. 9458–9471, 1990. View at Publisher · View at Google Scholar
  14. K. Yamamoto, H. Ishii, N. Kobayashi, and K. Hirose, “Effects of vacancy defects on thermal conduction of silicon nanowire: nonequilibrium green's function approach,” Applied Physics Express, vol. 4, Article ID 085001, 3 pages, 2011. View at Publisher · View at Google Scholar
  15. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, chapter 9, Imperial College Press, London, UK, 1998.