About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 531010, 8 pages
http://dx.doi.org/10.1155/2013/531010
Research Article

Synthesis of Silver-Doped Titanium TiO2 Powder-Coated Surfaces and Its Ability to Inactivate Pseudomonas aeruginosa and Bacillus subtilis

National University of Science and Technology, Islamabad 44000, Pakistan

Received 28 September 2012; Revised 27 December 2012; Accepted 13 January 2013

Academic Editor: Alan K. T. Lau

Copyright © 2013 Saman Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Eames, J. W. Tang, Y. Li, and P. Wilson, “Airborne transmission of disease in hospitals,” Journal of the Royal Society Interface, vol. 6, no. 6, pp. S697–S702, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. D. B. A. Memon, “Nosocomial infections; urgent need for structured and coherent approach to the problem in Pakistan,” Professional Medical Journal, vol. 14, no. 1, pp. 70–76, 2007.
  3. H. Kimmerle, M. Wiedmann-Al-Ahmad, K. Pelz, A. Wittmer, E. Hellwig, and A. Al-Ahmad, “Airborne microbes in different dental environments in comparison to a public area,” Archives of Oral Biology, vol. 57, no. 6, pp. 689–696, 2012.
  4. S. A. Sattar, “Promises and pitfalls of recent advances in chemical means of preventing the spread of nosocomial infections by environmental surfaces,” American Journal of Infection Control, vol. 38, no. 5, pp. S34–S40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. W. A. Daoud, J. H. Xin, and Y. H. Zhang, “Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities,” Surface Science, vol. 599, no. 1–3, pp. 69–75, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Ghule, A. V. Ghule, B. J. Chen, and Y. C. Ling, “Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study,” Green Chemistry, vol. 8, no. 12, pp. 1034–1041, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Makhluf, R. Dror, Y. Nitzan, Y. Abramovich, R. Jelinek, and A. Gedanken, “Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide,” Advanced Functional Materials, vol. 15, no. 10, pp. 1708–1715, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Qi, Z. Xu, X. Jiang, C. Hu, and X. Zou, “Preparation and antibacterial activity of chitosan nanoparticles,” Carbohydrate Research, vol. 339, no. 16, pp. 2693–2700, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Esteban-Cubillo, C. Pecharromán, E. Aguilar, J. Santarén, and J. S. Moya, “Antibacterial activity of copper monodispersed nanoparticles into sepiolite,” Journal of Materials Science, vol. 41, no. 16, pp. 5208–5212, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. R. Morones, J. L. Elechiguerra, A. Camacho et al., “The bactericidal effect of silver nanoparticles,” Nanotechnology, vol. 16, pp. 2346–2353, 2005.
  11. T. Nonami, H. Taoda, N. T. Hue et al., “Apatite formation on TiO2 photocatalyst film in a pseudo body solution,” Materials Research Bulletin, vol. 33, no. 1, pp. 125–131, 1998. View at Scopus
  12. E. J. Wolfrum, J. Huang, D. M. Blake et al., “Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces,” Environmental Science and Technology, vol. 36, no. 15, pp. 3412–3419, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Sokmen, F. Candan, and Z. Sumer, “Disinfection of E. coli by the Ag-TiO2/UV system: lipid peroxidation,” Journal of Photochemistry and Photobiology A, vol. 143, pp. 241–244, 2001.
  14. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Sunada, Y. Kikuchi, K. Hashimoto, and A. Fujishima, “Bactericidal and detoxification effects of TiO2 thin film photocatalysts,” Environmental Science and Technology, vol. 32, no. 5, pp. 726–728, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Ochiai and A. Fujishima, “Photo electrochemical properties of TiO2 photocatalyst and its applications for environmental purification,” Journal of Photochemistry and Photobiology C, vol. 13, no. 4, pp. 247–262, 2012.
  17. Y. K. Zhao, W. P. Sung, T. T. Tsai, and H. J. Wang, “Application of nanoscale silver-doped titanium dioxide as photocatalyst for indoor airborne bacteria control: a feasibility study in medical nursing institutions,” Journal of the Air and Waste Management Association, vol. 60, no. 3, pp. 337–345, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. V. Liga, E. L. Bryant, V. L. Colvin, and Q. Li, “Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment,” Water Research, vol. 45, no. 2, pp. 535–544, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Yuan, J. Ding, J. Xu, J. Deng, and J. Guo, “TiO2 nanoparticles co-doped with silver and nitrogen for antibacterial application,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 8, pp. 4868–4874, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. H. Tsuang, J. S. Sun, Y. C. Huang, C. H. Lu, W. H. S. Chang, and C. C. Wang, “Studies of photokilling of bacteria using titanium dioxide nanoparticles,” Artificial Organs, vol. 32, no. 2, pp. 167–174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Tatsuma, S. Takeda, S. Saitoh, Y. Ohko, and A. Fujishima, “Bactericidal effect of an energy storage TiO2–WO3 photocatalyst in dark,” Electrochemistry Communications, vol. 5, no. 9, pp. 793–796, 2003.
  22. S. U. M. Khan, M. Al-Shahry, and W. B. Ingler, “Efficient photochemical water splitting by a chemically modified n-TiO2,” Science, vol. 297, no. 5590, pp. 2243–2245, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Fu, P. S. Vary, and C. T. Lin, “Anatase TiO2 nanocomposites for antimicrobial coatings,” The Journal of Physical Chemistry B, vol. 109, pp. 8889–8898, 2005.
  24. M. Joshi, A. Bhattacharyya, and S. W. Ali, “Characterization techniques for nanotechnology applications in textiles,” Indian Journal of Fibre and Textile Research, vol. 33, no. 3, pp. 304–317, 2008. View at Scopus
  25. D. V. Bavykin and F. C. Walsh, Titanate and Titania Nanotubes: Synthesis, Properties and Applications, RSC Nanoscience and Nanotechnology, Cambridge, UK, 2009.
  26. K. P. Kühn, I. F. Chaberny, K. Massholder et al., “Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light,” Chemosphere, vol. 53, no. 1, pp. 71–77, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. D. G. Elvin, Nanotechnology for Green Building 9801 Fall Creek Rd., Indianapolis, Green Technology Forum, 2007.
  28. S. Saha, J. M. Wang, and A. Pal, “Nano silver impregnation on commercial TiO2 and a comparative photocatalytic account to degrade malachite green,” Separation and Purification Technology, vol. 89, pp. 147–159, 2012.
  29. M. A. Behnajady, N. Modirshahla, M. Shokri, and B. Rad, “Enhancement of photocatalytic activity of TiO2 nanoparticles by Silver doping: photodeposition versus liquid impregnation methods,” Global Nest Journal, vol. 10, no. 1, pp. 1–7, 2008. View at Scopus
  30. M. R. Oggioni, G. Pozzi, P. Galieni, P. E. Valensin, and C. Bigazzi, “Recurrent septicemia in an immunocompromised patient due to probiotic strains of Bacillus subtilis,” Journal of Clinical Microbiology, vol. 36, no. 1, pp. 325–326, 1998. View at Scopus
  31. D. J. McCombs, More on Bacillus subtilis. Dr. McCombs' Candida Plan. The Canadian expert, 2011.
  32. Collins and Lyne's Microbiological Methods, Arnold, London, UK, Collins and Lyne's Microbiological Methods.
  33. M. K. Seery, R. George, P. Floris, and S. C. Pillai, “Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis,” Journal of Photochemistry and Photobiology A, vol. 189, no. 2-3, pp. 258–263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Tortora, R. B. Funke, and L. C. Case, Microbiology: An Introduction, Addison-Wesley Longman, New York, NY, USA, 2001.
  35. D. M. Blake, P. C. Maness, Z. Huang, E. J. Wolfrum, J. Huang, and W. A. Jacoby, “Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells,” Separation and Purification Methods, vol. 28, no. 1, pp. 1–50, 1999. View at Scopus
  36. Z. X. Lu, L. Zhou, Z. L. Zhang et al., “Cell damage induced by photocatalysis of TiO2 thin films,” Langmuir, vol. 19, no. 21, pp. 8765–8768, 2003. View at Publisher · View at Google Scholar · View at Scopus