About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 531760, 6 pages
http://dx.doi.org/10.1155/2013/531760
Research Article

One-Step Synthesis of PEG-Coated Gold Nanoparticles by Rapid Microwave Heating

1Nano Hybrid Technology Research Center, Creative and Fundamental Research Division, Korea Electrotechnology Research Institute (KERI), Changwon-si 642-120, Republic of Korea
2University of Science & Technology (UST), Changwon-si 642-120, Republic of Korea
3Max Planck Institute for the Science of Light, 91058 Erlangen, Germany

Received 15 January 2013; Revised 21 February 2013; Accepted 22 February 2013

Academic Editor: Renyun Zhang

Copyright © 2013 Seung Kwon Seol et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Katz and I. Willner, “Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications,” Angewandte Chemie International Edition, vol. 43, no. 45, pp. 6042–6108, 2004. View at Publisher · View at Google Scholar
  2. X. Qian, X. H. Peng, D. O. Ansari et al., “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nature Biotechnology, vol. 26, no. 1, pp. 83–90, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. D. K. Kim, S. J. Park, J. H. Lee, Y. Y. Jeong, and S. Y. Jon, “Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging,” Journal of the American Chemical Society, vol. 129, no. 24, pp. 7661–7665, 2007. View at Publisher · View at Google Scholar
  4. C. C. Chien, H. H. Chen, S. F. Lai et al., “Gold nanoparticles as high resolution X-ray imaging contrast agents for the analysis of tumor-related micro-vasculature,” Journal of Nanobiotechnology, vol. 10, p. 10, 2012. View at Publisher · View at Google Scholar
  5. M. Ferrari, “cancer nanotechnology: opportunities and challenges,” Nature Reviews Cancer, vol. 5, pp. 161–171, 2005. View at Publisher · View at Google Scholar
  6. B. Kang, M. A. Mackey, and M. A. El-Sayed, “Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis,” Journal of the American Chemical Society, vol. 132, no. 5, pp. 1517–1519, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, “Gold nanoparticles: a new X-ray contrast agent,” British Journal of Radiology, vol. 79, no. 939, pp. 248–253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, “The use of gold nanoparticles to enhance radiotherapy in mice,” Physics in Medicine and Biology, vol. 49, no. 18, pp. N309–N315, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Brannon-Peppas and J. O. Blanchette, “Nanoparticle and targeted systems for cancer therapy,” Advanced Drug Delivery Reviews, vol. 56, no. 11, pp. 1649–1659, 2004. View at Publisher · View at Google Scholar
  10. I. Brigger, C. Dubernet, and P. Couvreur, “Nanoparticles in cancer therapy and diagnosis,” Advanced Drug Delivery Reviews, vol. 54, no. 5, pp. 631–651, 2002. View at Publisher · View at Google Scholar
  11. W. Cai, T. Gao, H. Hong, and J. Sun, “Applications of gold nanoparticles in cancer nanotechnology,” Nanotechnology Science and Applications, vol. 1, pp. 17–32, 2008.
  12. T. Niidome, M. Yamagata, Y. Okamoto et al., “PEG-modified gold nanorods with a stealth character for in vivo applications,” Journal of Controlled Release, vol. 114, no. 3, pp. 343–347, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. C. J. Liu, C. H. Wang, C. C. Chien et al., “Enhanced x-ray irradiation-induced cancer cell damage by gold nanoparticles treated by a new synthesis method of polyethylene glycol modification,” Nanotechnology, vol. 19, no. 29, Article ID 295104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. K. Seol, D. Kim, S. Jung, and Y. Hwu, “Microwave synthesis of gold nanoparticles: effect of applied microwave power and solution pH,” Materials Chemistry and Physics, vol. 131, no. 1-2, pp. 331–335, 2011. View at Publisher · View at Google Scholar
  15. S. K. Seol, D. Kim, S. Jung et al., “Effect of citrate on poly(vinyl pyrrolidone)-stabilized gold nanoparticles formed by PVP reduction in microwave (MW) synthesis,” Materials Chemistry and Physics, vol. 137, no. 1, pp. 135–139, 2012. View at Publisher · View at Google Scholar
  16. D. Kim, J. Choi, G. J. Kim et al., “Microwave-accelerated energy-efficient esterification of free fatty acid with a heterogeneous catalyst,” Bioresource Technology, vol. 102, no. 3, pp. 3639–3641, 2011. View at Publisher · View at Google Scholar
  17. D. Kim, J. Choi, G. J. Kim, S. K. Seol, and S. Jung, “Accelerated esterification of free fatty acid using pulsed microwaves,” Bioresource Technology, vol. 102, no. 14, pp. 7229–7231, 2011. View at Publisher · View at Google Scholar
  18. H. M. Kingston and S. J. Haswell, Microwave-Enhanced Chemistry, American Chemical Society, Washington, DC, USA, 2005.
  19. J. A. Gerbec, D. Magana, A. Washington, and G. F. Strouse, “Microwave-enhanced reaction rates for nanoparticle synthesis,” Journal of the American Chemical Society, vol. 127, no. 45, pp. 15791–15800, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Fan, W. Li, S. Zhao, J. Chen, and X. Li, “Efficient one pot synthesis of chitosan-induced gold nanoparticles by microwave irradiation,” Materials Letters, vol. 62, no. 20, pp. 3518–3520, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Shen, Y. Du, N. Hua, and P. Yang, “Microwave irradiation synthesis and self-assembly of alkylamine-stabilized gold nanoparticles,” Powder Technology, vol. 162, no. 1, pp. 64–72, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. F. K. Liu, Y. C. Chang, F. H. Ko, and T. C. Chu, “Microwave rapid heating for the synthesis of gold nanorods,” Materials Letters, vol. 58, no. 3-4, pp. 373–377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Gutiérrez-Wing, J. J. . Velázquez-Salazar, and M. José-Yacamán, “Procedures for the synthesis and capping of metal nanoparticles,” Methods in Molecular Biology, vol. 906, pp. 3–19, 2012.
  24. C. Gutiérrez-Wing, R. Esparza, C. Vargas-Hernández, M. E. Fernández García, and M. José-Yacamán, “Microwave-assisted synthesis of gold nanoparticles self-assembled into self-supported superstructures,” Nanoscale, vol. 4, pp. 2281–2287, 2012. View at Publisher · View at Google Scholar
  25. M. N. Nadagouda, T. F. Speth, and R. S. Varma, “Microwave-assisted green synthesis of silver nanostructures,” Accounts of Chemical Research, vol. 19, no. 7, pp. 469–478, 2011.
  26. C. H. Wang, C. J. Liu, C. L. Wang et al., “Optimizing the size and surface properties of polyethylene glycol (PEG)-gold nanoparticles by intense x-ray irradiation,” Journal of Physics D, vol. 41, no. 19, Article ID 195301, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. C. E. Hoppe, M. Lazzari, I. Pardiñas-Blanco, and M. A. López-Quintela, “One-step synthesis of gold and silver hydrosols using poly(N-vinyl-2- pyrrolidone) as a reducing agent,” Langmuir, vol. 22, no. 16, pp. 7027–7034, 2006. View at Publisher · View at Google Scholar · View at Scopus