About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 534042, 7 pages
http://dx.doi.org/10.1155/2013/534042
Research Article

Influence of Anode Area and Electrode Gap on the Morphology of Nanotubes Arrays

1Department of Power Engineering, School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, Beijing 100044, China
2Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Ministry of Education, Beijing 100044, China

Received 27 March 2013; Revised 30 April 2013; Accepted 5 May 2013

Academic Editor: Amir Kajbafvala

Copyright © 2013 Min Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Nakata, T. Ochiai, T. Murakami, and A. Fujishima, “Photoenergy conversion with TiO2 photocatalysis: new materials and recent applications,” Electrochimica Acta, vol. 84, pp. 103–111, 2012.
  2. A. Zhang, M. Zhou, L. Han, and Q. Zhou, “The combination of rotating disk photocatalytic reactor and TiO2 nanotube arrays for environmental pollutants removal,” Journal of Hazardous Materials, vol. 186, no. 2-3, pp. 1374–1383, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Bai, Y. Liu, J. Li, B. Zhou, Q. Zheng, and W. Cai, “A novel thin-layer photoelectrocatalytic (PEC) reactor with double-faced titania nanotube arrays electrode for effective degradation of tetracycline,” Applied Catalysis B, vol. 98, no. 3-4, pp. 154–160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Liu, G. Liu, J. Fan et al., “Photoelectrocatalytic degradation of 4,4′-dibromobiphenyl in aqueous solution on TiO2 and doped TiO2 nanotube arrays,” Chemosphere, vol. 82, no. 1, pp. 43–47, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Muramatsu, Q. Jin, M. Fujishima, and H. Tada, “Visible-light-activation of TiO2 nanotube array by the molecular iron oxide surface modification,” Applied Catalysis B, vol. 119-120, pp. 74–80, 2012.
  6. F. Jiang, S. Zheng, L. An, and H. Chen, “Effect of calcination temperature on the adsorption and photocatalytic activity of hydrothermally synthesized TiO2 nanotubes,” Applied Surface Science, vol. 258, no. 18, pp. 7188–7194, 2012.
  7. H. Li, L. Cao, W. Liu, G. Su, and B. Dong, “Synthesis and investigation of TiO2 nanotube arrays prepared by anodization and their photocatalytic activity,” Ceramics International, vol. 38, no. 7, pp. 5791–5797, 2012.
  8. J. M. Macak, M. Zlamal, J. Krysa, and P. Schmuki, “Self-organized TiO2 nanotube layers as highly efficient photocatalysts,” Small, vol. 3, no. 2, pp. 300–304, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Lai, H. Zhuang, L. Sun, Z. Chen, and C. Lin, “Self-organized TiO2 nanotubes in mixed organic-inorganic electrolytes and their photoelectrochemical performance,” Electrochimica Acta, vol. 54, no. 26, pp. 6536–6542, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, “Titania nanotubes prepared by chemical processing,” Advanced Materials, vol. 11, no. 15, pp. 1307–1311, 1999.
  11. Q. Chen, W. Zhou, G. H. Du, and L. M. Peng, “Trititanate nanotubes made via a single alkali treatment,” Advanced Materials, vol. 14, no. 17, pp. 1208–1211, 2002.
  12. C. C. Tsai and H. Teng, “Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment,” Chemistry of Materials, vol. 16, no. 22, pp. 4352–4358, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. J. N. Nian and H. Teng, “Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor,” Journal of Physical Chemistry B, vol. 110, no. 9, pp. 4193–4198, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Hoyer, “Formation of a titanium dioxide nanotube array,” Langmuir, vol. 12, no. 6, pp. 1411–1413, 1996. View at Scopus
  15. J. H. Lee, I. C. Leu, M. C. Hsu, Y. W. Chung, and M. H. Hon, “Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approach,” Journal of Physical Chemistry B, vol. 109, no. 27, pp. 13056–13059, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, and M. Aucouturier, “Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy,” Surface and Interface Analysis, vol. 27, no. 7, pp. 629–637, 1999. View at Scopus
  17. D. Gong, C. A. Grimes, O. K. Varghese et al., “Titanium oxide nanotube arrays prepared by anodic oxidation,” Journal of Materials Research, vol. 16, no. 12, pp. 3331–3334, 2001. View at Scopus
  18. O. K. Varghese, D. Gong, M. Paulose, C. A. Grimes, and E. C. Dickey, “Crystallization and high-temperature structural stability of titanium oxide nanotube arrays,” Journal of Materials Research, vol. 18, no. 1, pp. 156–165, 2003. View at Scopus
  19. O. K. Varghese, M. Paulose, K. Shankar, G. K. Mor, and C. A. Grimes, “Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays,” Journal of Nanoscience and Nanotechnology, vol. 5, no. 7, pp. 1158–1165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Omidvar, S. Goodarzi, A. Seif, and A. R. Azadmehr, “Influence of anodization parameters on the morphology of TiO2 nanotube arrays,” Superlattices and Microstructures, vol. 50, no. 1, pp. 26–39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Palmas, A. Da Pozzo, M. Mascia et al., “Effect of the preparation conditions on the performance of TiO2 nanotube arrays obtained by electrochemical oxidation,” International Journal of Hydrogen Energy, vol. 36, no. 15, pp. 8894–8901, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Kılınç, E. Şennik, and Z. Z. Öztürk, “Fabrication of TiO2 nanotubes by anodization of Ti thin films for VOC sensing,” Thin Solid Films, vol. 520, no. 3, pp. 953–958, 2011.
  23. Y. Liu, D. Wang, L. Cao, and S. Chen, “Structural engineering of highly ordered TiO2 nanotube array by periodic anodization of titanium,” Electrochemistry Communications, vol. 23, pp. 68–71, 2012.
  24. M. Okada, K. Tajima, Y. Yamada, and K. Yoshimura, “Self-organized formation of short TiO2 nanotube arrays by complete anodization of Ti thin films,” Physics Procedia, vol. 32, pp. 714–718, 2012.
  25. J. Wang and Z. Lin, “Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization,” Chemistry of Materials, vol. 20, no. 4, pp. 1257–1261, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. R. P. Antony, T. Mathews, A. Dasgupta, S. Dash, A. K. Tyagi, and B. Raj, “Rapid breakdown anodization technique for the synthesis of high aspect ratio and high surface area anatase TiO2 nanotube powders,” Journal of Solid State Chemistry, vol. 184, no. 3, pp. 624–632, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Li, Z. Zhou, J. Lei, J. He, S. Zhang, and F. Pan, “Highly ordered anodic TiO2 nanotube arrays and their stabilities as photo(electro)catalysts,” Applied Surface Science, vol. 258, no. 8, pp. 3647–3651, 2012.
  28. G. A. Crawford, N. Chawla, K. Das, S. Bose, and A. Bandyopadhyay, “Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate,” Acta Biomaterialia, vol. 3, no. 3, pp. 359–367, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. H. H. Ou and S. L. Lo, “Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application,” Separation and Purification Technology, vol. 58, no. 1, pp. 179–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Yu, J. C. Yu, C. Y. Chan et al., “Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye,” Applied Catalysis B, vol. 61, no. 1-2, pp. 1–11, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. K. C. Sun, Y. C. Chen, M. Y. Kuo et al., “Synthesis and characterization of highly ordered TiO2 nanotube arrays for hydrogen generation via water splitting,” Materials Chemistry and Physics, vol. 129, no. 1-2, pp. 35–39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Xiong, F. Yang, L. Yan et al., “Bifunctional photocatalysis of TiO2/Cu2O composite under visible light: Ti3+ in organic pollutant degradation and water splitting,” Journal of Physics and Chemistry of Solids, vol. 72, no. 9, pp. 1104–1109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Zhang, S. Zhang, F. Peng, H. Zhang, H. Liu, and H. Zhao, “Electrodeposition of polyhedral Cu2O on TiO2 nanotube arrays for enhancing visible light photocatalytic performance,” Electrochemistry Communications, vol. 13, no. 8, pp. 861–864, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Zang, W. Macyk, C. Lange et al., “Visible-light detoxification and charge generation by transition metal chloride modified titania,” Chemistry, vol. 6, no. 2, pp. 379–384, 2000. View at Scopus
  35. F. Bosc, D. Edwards, N. Keller, V. Keller, and A. Ayral, “Mesoporous TiO2-based photocatalysts for UV and visible light gas-phase toluene degradation,” Thin Solid Films, vol. 495, no. 1-2, pp. 272–279, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Han, Z. Li, and J. Shen, “Photocatalytic degradation of dodecyl-benzenesulfonate over TiO2-Cu2O under visible irradiation,” Journal of Hazardous Materials, vol. 168, no. 1, pp. 215–219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Liu, H. K. Shon, X. Sun, S. Vigneswaran, and H. Nan, “Preparation and characterization of visible light responsive Fe2O3-TiO2 composites,” Applied Surface Science, vol. 257, no. 13, pp. 5813–5819, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Yang, S. Luo, Y. Li, Y. Xiao, Q. Kang, and Q. Cai, “High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst,” Environmental Science and Technology, vol. 44, no. 19, pp. 7641–7646, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. J. M. Macak, H. Tsuchiya, A. Ghicov et al., “TiO2 nanotubes: self-organized electrochemical formation, properties and applications,” Current Opinion in Solid State and Materials Science, vol. 11, no. 1-2, pp. 3–18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Narayanan, T. Y. Kwon, and K. H. Kim, “TiO2 nanotubes from stirred glycerol/NH4F electrolyte: roughness, wetting behavior and adhesion for implant applications,” Materials Chemistry and Physics, vol. 117, no. 2-3, pp. 460–464, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. H. E. Prakasam, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “A new benchmark for TiO2 nanotube array growth by anodization,” Journal of Physical Chemistry C, vol. 111, no. 20, pp. 7235–7241, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. S. E. Kim, J. H. Lim, S. C. Lee, S. C. Nam, H. G. Kang, and J. Choi, “Anodically nanostructured titanium oxides for implant applications,” Electrochimica Acta, vol. 53, no. 14, pp. 4846–4851, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Paulose, K. Shankar, S. Yoriya et al., “Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length,” The Journal of Physical Chemistry B, vol. 110, no. 33, pp. 16179–16184, 2006.
  44. B. G. Lee, J. W. Choi, S. E. Lee, Y. S. Jeong, H. J. Oh, and C. S. Chi, “Formation behavior of anodic TiO2 nanotubes in fluoride containing electrolytes,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 19, no. 4, pp. 842–845, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. W. Y. Choi, J. Chung, C. H. Cho, and J. O. Kim, “Fabrication and photocatalytic activity of a novel nanostructured TiO2 metal membrane,” Desalination, vol. 279, no. 1–3, pp. 359–366, 2011.
  46. T. Ruff, R. Hahn, and P. Schmuki, “From anodic TiO2 nanotubes to hexagonally ordered TiO2 nanocolumns,” Applied Surface Science, vol. 257, no. 19, pp. 8177–8181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. X. Zeng, Y. X. Gan, E. Clark, and L. Su, “Amphiphilic and photocatalytic behaviors of TiO2 nanotube arrays on Ti prepared via electrochemical oxidation,” Journal of Alloys and Compounds, vol. 509, no. 24, pp. L221–L227, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Srimuangmak and S. Niyomwas, “Effects of voltage and addition of water on photocatalytic activity of TiO2 nanotubes prepared by anodization method,” Energy Procedia, vol. 9, pp. 435–439, 2011.
  49. K. Shankar, G. K. Mor, A. Fitzgerald, and C. A. Grimes, “Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide-water mixtures,” Journal of Physical Chemistry C, vol. 111, no. 1, pp. 21–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. A. El Ruby Mohamed and S. Rohani, “Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review,” Energy and Environmental Science, vol. 4, no. 4, pp. 1065–1086, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Sun, J. Li, C. L. Wang, S. F. Li, H. B. Chen, and C. J. Lin, “An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity,” Solar Energy Materials and Solar Cells, vol. 93, no. 10, pp. 1875–1880, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Mo, Y. Zhang, Q. Xu, J. J. Lamson, and R. Zhao, “Photocatalytic purification of volatile organic compounds in indoor air: a literature review,” Atmospheric Environment, vol. 43, no. 14, pp. 2229–2246, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. Z. Lockman, S. Sreekantan, S. Ismail, L. Schmidt-Mende, and J. L. MacManus-Driscoll, “Influence of anodisation voltage on the dimension of titania nanotubes,” Journal of Alloys and Compounds, vol. 503, no. 2, pp. 359–364, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. H. J. Oh, I. K. Kim, K. W. Jang, J. H. Lee, S. Lee, and C. S. Chi, “Influence of electrolyte and anodic potentials on morphology of titania nanotubes,” Metals and Materials International, vol. 18, no. 4, pp. 673–677, 2012.