About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 564307, 10 pages
http://dx.doi.org/10.1155/2013/564307
Research Article

Densely Packed Linear Assembles of Carbon Nanotube Bundles in Polysiloxane-Based Nanocomposite Films

1Extreme Energy-Density Research Institute, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
2Department of Electrical and Engineering System Engineering, Nagaoka National College of Technology, Nagaoka, Niigata 940-8532, Japan
3Department of Environment Engineering, Sun Moon University, Asan, Chung Nam 336-708, Republic of Korea
4Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan

Received 13 December 2012; Accepted 18 January 2013

Academic Editor: Jian Wei

Copyright © 2013 Hong-Baek Cho et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Choudhary and A. Gupta, “Polymer/carbon nanotube nanocomposites,” in Carbon Nanotubes—Polymer Nanocomposites, S. Yellampalli, Ed., Intech, 2011.
  2. W. S. Lee and J. Yu, “Comparative study of thermally conductive fillers in underfill for the electronic components,” Diamond and Related Materials, vol. 14, no. 10, pp. 1647–1653, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Deng, X. Ding, W. Zhang et al., “Carbon nanotube-polyaniline hybrid materials,” European Polymer Journal, vol. 38, no. 12, pp. 2497–2501, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. B. S. Shim, J. Starkovich, and N. Kotov, “Multilayer composites from vapor-grown carbon nano-fibers,” Composites Science and Technology, vol. 66, no. 9, pp. 1171–1178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Composites Science and Technology, vol. 63, no. 15, pp. 2223–2253, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. H. B. Cho, T. Nakayama, T. Suzuki et al., “Linear assembles of BN nanosheets, fabricated in polymer/BN nanosheet composite film,” Journal of Nanomaterials, vol. 2011, Article ID 693454, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Kemaloglu, G. Ozkoc, and A. Aytac, “Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites,” Thermochimica Acta, vol. 499, no. 1-2, pp. 40–47, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. X. L. Xie, Y. W. Mai, and X. P. Zhou, “Dispersion and alignment of carbon nanotubes in polymer matrix: a review,” Materials Science and Engineering R, vol. 49, no. 4, pp. 89–112, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. S. Song and J. R. Youn, “Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites,” Carbon, vol. 43, no. 7, pp. 1378–1385, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Han and A. Fina, “Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review,” Journal of Nanomaterials, vol. 36, no. 7, pp. 914–944, 2011.
  11. W. Zhao, H. Wang, H. Tang, and G. Chen, “Facile preparation of epoxy-based composite with oriented graphite nanosheets,” Polymer, vol. 47, no. 26, pp. 8401–8405, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Zhou, S. Qi, H. Li, and S. Shao, “Study on insulating thermal conductive BN/HDPE composites,” Thermochimica Acta, vol. 452, no. 1, pp. 36–42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Logakis, C. H. Pandis, P. Pissis, J. Pionteck, and P. Pötschke, “Highly conducting poly(methyl methacrylate)/carbon nanotubes composites: investigation on their thermal, dynamic-mechanical, electrical and dielectric properties,” Composites Science and Technology, vol. 71, no. 6, pp. 854–862, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. H. B. Cho, T. Nakayama, T. Suzuki et al., “Formation and structural characteristic of perpendicularly aligned boron nitride nanosheet bridges in polymer/boron nitride composite film and its thermal conductivity,” Japanese Journal of Applied Physics, vol. 50, no. 1, Article ID 01BJ05, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. M. H. Al-Saleh and U. Sundararaj, “A review of vapor grown carbon nanofiber/polymer conductive composites,” Carbon, vol. 47, no. 1, pp. 2–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Lu, W. Weng, X. Chen, D. Wu, C. Wu, and G. Chen, “Piezoresistive materials from directed shear-induced assembly of graphite nanosheets in polyethylene,” Advanced Functional Materials, vol. 15, no. 8, pp. 1358–1363, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Toyohara, Y. Benino, T. Fujiwara et al., “Enhancement and depression in second-order optical nonlinearity of Ba2TiGe2O8 in crystallized glass prepared in a high magnetic field,” Journal of Applied Physics, vol. 99, no. 4, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Q. Chen, T. Saito, H. Yamada, and K. Matsushige, “Aligning single-wall carbon nanotubes with an alternating-current electric field,” Applied Physics Letters, vol. 78, no. 23, pp. 3714–3716, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Takahashi, T. Murayama, A. Higuchi, H. Awano, and K. Yonetake, “Aligning vapor-grown carbon fibers in polydimethylsiloxane using dc electric or magnetic field,” Carbon, vol. 44, no. 7, pp. 1180–1188, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. P. V. Kamat, K. G. Thomas, S. Barazzouk, G. Girishkumar, K. Vinodgopal, and D. Meisel, “Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field,” Journal of the American Chemical Society, vol. 126, no. 34, pp. 10757–10762, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Saotome, H. Kim, D. Lashmore, et al., “Transparent conducting film: effect of mechanical stretching to optical and electrical properties of carbon nanotube mat,” Bulletin of Materials Science, vol. 34, no. 4, pp. 615–622, 2011.
  22. K. Mylvaganam and L. C. Zhang, “Fabrication and application of polymer composites comprising carbon nanotubes,” Recent Patents on Nanotechnology, vol. 1, no. 1, pp. 59–65, 2007. View at Scopus
  23. Y. Zhang, A. Chang, J. Cao et al., “Electric-field-directed growth of aligned single-walled carbon nanotubes,” Applied Physics Letters, vol. 79, no. 19, pp. 3155–3157, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. C. A. Martin, J. K. W. Sandler, A. H. Windle et al., “Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites,” Polymer, vol. 46, no. 3, pp. 877–886, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Chen, G. Chen, and L. Lu, “Piezoresistive behavior study on finger-sensing silicone rubber/graphite nanosheet nanocomposites,” Advanced Functional Materials, vol. 17, no. 6, pp. 898–904, 2007. View at Publisher · View at Google Scholar
  26. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991. View at Scopus
  27. R. Khare and S. Bose, “Carbon nanotube based composites- a review,” Journal of Minerals & Materials Characterization & Engineering, vol. 4, pp. 31–46, 2005.
  28. A. L. Kalamkarov, A. V. Georgiades, S. K. Rokkam, V. P. Veedu, and M. N. Ghasemi-Nejhad, “Analytical and numerical techniques to predict carbon nanotubes properties,” International Journal of Solids and Structures, vol. 43, no. 22-23, pp. 6832–6854, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. P. Salvetat-Delmotte and A. Rubio, “Mechanical properties of carbon nanotubes: a fiber digest for beginners,” Carbon, vol. 40, no. 10, pp. 1729–1734, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. R. S. Ruoff, D. Qian, and W. K. Liu, “Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements,” Comptes Rendus Physique, vol. 4, no. 9, pp. 993–1008, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Deng, Q. S. Zheng, L. F. Wang, and C. W. Nan, “Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites,” Applied Physics Letters, vol. 90, no. 2, Article ID 021914, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson, and J. E. Fischer, “Carbon nanotube composites for thermal management,” Applied Physics Letters, vol. 80, no. 15, pp. 2767–2769, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. J. I. Paredes and M. Burghard, “Dispersions of individual single-walled carbon nanotubes of high length,” Langmuir, vol. 20, no. 12, pp. 5149–5152, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. Ounaies, C. Park, K. E. Wise, E. J. Siochi, and J. S. Harrison, “Electrical properties of single wall carbon nanotube reinforced polyimide composites,” Composites Science and Technology, vol. 63, no. 11, pp. 1637–1646, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. H. Windle, “Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties,” Polymer, vol. 40, no. 21, pp. 5967–5971, 1999. View at Scopus
  36. O. Breuer and U. Sundarara, “Big returns from small filber: a review of polymer/carbon nanotube composites,” Polymer Composties, vol. 25, pp. 630–641, 2004.
  37. M. Senthil Kumar, T. H. Kim, S. H. Lee et al., “Influence of electric field type on the assembly of single walled carbon nanotubes,” Chemical Physics Letters, vol. 383, no. 3-4, pp. 235–239, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Prasse, J. Y. Cavaillé, and W. Bauhofer, “Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment,” Composites Science and Technology, vol. 63, no. 13, pp. 1835–1841, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. H. B. Cho, T. Nakayama, Y. Tokoi et al., “Facile preparation of a polysiloxane-based hybrid composite with highly-oriented boron nitride nanosheets and an unmodified surface,” Composites Science and Technology, vol. 70, no. 12, pp. 1681–1686, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Zhang, P. Wang, C. A. Ma, G. Wu, and M. Sumita, “Temperature and time dependence of conductive network formation: dynamic percolation and percolation time,” Polymer, vol. 47, no. 1, pp. 466–473, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Tantang, J. Y. Ong, C. L. Loh et al., “Using oxidation to increase the electrical conductivity of carbon nanotube electrodes,” Carbon, vol. 47, no. 7, pp. 1867–1870, 2009. View at Publisher · View at Google Scholar · View at Scopus