About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 568175, 8 pages
http://dx.doi.org/10.1155/2013/568175
Research Article

Electrical Characterization of Nanopolyaniline/Porous Silicon Heterojunction at High Temperatures

1Department of Optical Science and Technology, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-8506, Japan
2Energy Materials Laboratory, Physics Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt

Received 28 June 2012; Revised 21 January 2013; Accepted 29 January 2013

Academic Editor: Xuedong Bai

Copyright © 2013 Salah E. El-Zohary et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. G. MacDiarmid, “Synthetic metals: a novel role for organic polymers,” Synthetic Metals, vol. 125, no. 1, pp. 11–22, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. E. T. Kang, K. G. Neoh, and K. L. Tan, “Polyaniline: a polymer with many interesting intrinsic redox states,” Progress in Polymer Science, vol. 23, no. 2, pp. 277–324, 1998. View at Scopus
  3. H. Namazi, R. Kabiri, and A. Entezami, “Determination of extremely low percolation threshold electroactivity of the blend polyvinyl chloride/polyaniline doped with camphorsulfonic acid by cyclic voltammetry method,” European Polymer Journal, vol. 38, no. 4, pp. 771–777, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. A. G. MacDiarmid, S.-L. Mu, N. L. D. Somasiri, and W. Wu, “Electrochemical characteristics of “polyaniline” cathodes and anodes in aqueous electrolytes,” Molecular Crystals and Liquid Crystals, vol. 121, pp. 187–190, 1985.
  5. P. Novák, K. Müller, K. S. Santhanam, and O. Haas, “Electrochemically active polymers for rechargeable batteries,” Chemical Reviews, vol. 97, no. 1, pp. 207–282, 1997.
  6. C. D. Batich, H. A. Laitinen, and H. C. Zhou, “Chromatic changes in polyaniline films,” Journal of the Electrochemical Society, vol. 137, no. 3, pp. 883–885, 1990. View at Scopus
  7. S. A. Sapp, G. A. Sotzing, and J. R. Reynolds, “High contrast ratio and fast-switching dual polymer electrochromic devices,” Chemistry of Materials, vol. 10, no. 8, pp. 2101–2108, 1998. View at Scopus
  8. Y. H. Dong and S. L. Mu, “Photoelectrochemical behaviour of polyaniline affected by potentials and pH of solutions,” Electrochimica Acta, vol. 36, no. 13, pp. 2015–2018, 1991. View at Scopus
  9. J. Jang, J. Ha, and K. Kim, “Organic light-emitting diode with polyaniline-poly(styrene sulfonate) as a hole injection layer,” Thin Solid Films, vol. 516, no. 10, pp. 3152–3156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. A. Chen, K. R. Chuang, C. I. Chao, and H. T. Lee, “White-light emission from electroluminescence diode with polyaniline as the emitting layer,” Synthetic Metals, vol. 82, no. 3, pp. 207–210, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. Q. Li, J. Wu, Q. Tang et al., “Application of microporous polyaniline counter electrode for dye-sensitized solar cells,” Electrochemistry Communications, vol. 10, no. 9, pp. 1299–1302, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. X. Tan, J. Zhai, M. X. Wan, L. Jiang, and D. B. Zhu, “Polyaniline as a hole transport material to prepare solid solar cells,” Synthetic Metals, vol. 137, no. 1–3, pp. 1511–1512, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Zhang, W. J. Goux, and S. K. Manohar, “Synthesis of polyaniline nanofibers by “nanofiber seeding”,” Journal of the American Chemical Society, vol. 126, no. 14, pp. 4502–4503, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Wang and X. Jing, “Intrinsically conducting polymers for electromagnetic interference shielding,” Polymers for Advanced Technologies, vol. 16, no. 4, pp. 344–351, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Wiznerowicz, “Conductive polymers instead of carbon black?” Wire, vol. 44, no. 1, p. 102, 1994. View at Scopus
  16. M. Gerard, A. Chaubey, and B. D. Malhotra, “Application of conducting polymers to biosensors,” Biosensors and Bioelectronics, vol. 17, no. 5, pp. 345–359, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. R. N. Silva, E. R. Asquieri, and K. F. Fernandes, “Immobilization of Aspergillus niger glucoamylase onto a polyaniline polymer,” Process Biochemistry, vol. 40, no. 3-4, pp. 1155–1159, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. D. E. Tallman, G. Spinks, A. Dominis, and G. G. Wallace, “Electroactive conducting polymers for corrosion control: part 1. General introduction and a review of non-ferrous metals,” Journal of Solid State Electrochemistry, vol. 6, no. 2, pp. 73–84, 2002. View at Scopus
  19. A. Kalendová, D. Veselý, J. Stejskal, and M. Trchová, “Anticorrosion properties of inorganic pigments surface-modified with a polyaniline phosphate layer,” Progress in Organic Coatings, vol. 63, no. 2, pp. 209–221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. J. C. Chiang and A. G. MacDiarmid, ““Polyaniline”: protonic acid doping of the emeraldine form to the metallic regime,” Synthetic Metals, vol. 13, no. 1–3, pp. 193–205, 1986. View at Scopus
  21. D. Zhang and Y. Y. Wang, “Synthesis and applications of one-dimensional nano-structured polyaniline: an overview,” Materials Science and Engineering: B, vol. 134, pp. 9–19, 2006.
  22. J. Huang, S. Virji, B. H. Weiller, and R. B. Kaner, “Polyaniline nanofibers: facile synthesis and chemical sensors,” Journal of the American Chemical Society, vol. 125, no. 2, pp. 314–315, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. J. X. Huang and R. B. Kaner, “Nanofiber formation in the chemical polymerization of aniline: a mechanistic study,” Angewandte Chemie, vol. 116, no. 43, pp. 5941–5945, 2004. View at Publisher · View at Google Scholar
  24. S. E. Moulton, P. C. Innis, L. A. P. Kane-Maguire, O. Ngamna, and G. G. Wallace, “Polymerisation and characterisation of conducting polyaniline nanoparticle dispersions,” Current Applied Physics, vol. 4, no. 2–4, pp. 402–406, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Mynbaeva, A. Sitnikova, A. Tregubova, and K. Mynbaev, “HVPE GaN growth on porous SiC with closed surface porosity,” Journal of Crystal Growth, vol. 303, no. 2, pp. 472–479, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. A. M. Farag, A. Ashery, and F. S. Terra, “Fabrication and electrical characterization of n-InSb on porous Si heterojunctions prepared by liquid phase epitaxy,” Microelectronics Journal, vol. 39, no. 2, pp. 253–260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. R. Forrest, M. L. Kaplan, and P. H. Schmidt, “Organic-on-inorganic semiconductor contact barrier diodes. I. Theory with applications to organic thin films and prototype devices,” Journal of Applied Physics, vol. 55, no. 6, pp. 1492–1507, 1984. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Kumar, S. Adhikari, and P. Banerji, “Fabrication and characterization of polyaniline/porous silicon heterojunction,” Synthetic Metals, vol. 160, no. 13-14, pp. 1507–1512, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Wang and E. A. Schiff, “Polyaniline on crystalline silicon heterojunction solar cells,” Applied Physics Letters, vol. 91, no. 13, Article ID 133504, 3 pages, 2007. View at Publisher · View at Google Scholar
  30. E. A. T. Dirani, R. K. Onmori, C. A. Olivati, R. M. Faria, and A. M. Andrade, “Study of heterojunction diodes using POMA/PANI and amorphous/microcrystalline silicon structures,” Synthetic Metals, vol. 121, no. 1–3, pp. 1545–1546, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Chiboub, R. Boukherroub, N. Gabouze et al., “Covalent grafting of polyaniline onto aniline-terminated porous silicon,” Optical Materials, vol. 32, no. 7, pp. 748–752, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. C. A. Betty, “Highly sensitive capacitive immunosensor based on porous silicon-polyaniline structure: bias dependence on specificity,” Biosensors and Bioelectronics, vol. 25, no. 2, pp. 338–343, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Fan, M. Wan, and D. Zhu, “Studies on the rectifying effect of the heterojunction between porous silicon and water-soluble copolymer of polyaniline,” Synthetic Metals, vol. 95, no. 2, pp. 119–124, 1998. View at Scopus
  34. Ş. Aydoğan, M. Sağlam, and A. Türüt, “On the barrier inhomogeneities of polyaniline/p-Si/Al structure at low temperature,” Applied Surface Science, vol. 250, no. 1, pp. 43–49, 2005. View at Publisher · View at Google Scholar
  35. Y. Guo and Y. Zhou, “Polyaniline nanofibers fabricated by electrochemical polymerization: a mechanistic study,” European Polymer Journal, vol. 43, no. 6, pp. 2292–2297, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. N. J. Pinto, I. Ramos, R. Rojas, P. C. Wang, and A. T. Johnson, “Electric response of isolated electrospun polyaniline nanofibers to vapors of aliphatic alcohols,” Sensors & Actuators B, vol. 129, no. 2, pp. 621–627, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. Z. Wang, M. Chen, and H. L. Li, “Preparation and characterization of uniform polyaniline nano-fibrils using the anodic aluminum oxide template,” Materials Science and Engineering A, vol. 328, no. 1, pp. 33–38, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Zhang, J. Deng, and M. Wan, “Highly crystalline and thin polyaniline nanofibers oxidized by ferric chloride,” Materials Chemistry and Physics, vol. 115, no. 1, pp. 275–279, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. R. T. Tung, “Electron transport of inhomogeneous Schottky barriers,” Applied Physics Letters, vol. 58, no. 24, pp. 2821–2823, 1991. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Coskun, M. Biber, and H. Efeoglu, “Temperature dependence of current-voltage characteristics of Sn/p-GaTe Schottky diodes,” Applied Surface Science, vol. 211, no. 1–4, pp. 360–366, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. J. H. Werner and H. H. Güttler, “Barrier inhomogeneities at Schottky contacts,” Journal of Applied Physics, vol. 69, no. 3, pp. 1522–1533, 1991. View at Publisher · View at Google Scholar · View at Scopus
  42. C. A. Dimitriadis, S. Logothetidis, and I. Alexandrou, “Schottky barrier contacts of titanium nitride on n-type silicon,” Applied Physics Letters, p. 502, 1995. View at Publisher · View at Google Scholar · View at Scopus
  43. Ş. Aydoǧan, M. Saǧlam, and A. Türüt, “Some electrical properties of polyaniline/p-Si/Al structure at 300 K and 77 K temperatures,” Microelectronic Engineering, vol. 85, no. 2, pp. 278–283, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Pattabi, S. Krishnan, Ganesh, and X. Mathew, “Effect of temperature and electron irradiation on the I-V characteristics of Au/CdTe Schottky diodes,” Solar Energy, vol. 81, no. 1, pp. 111–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. D. T. Quan and H. Hbib, “High barrier height Au/n-type InP Schottky contacts with a POxNyHz interfacial layer,” Solid-State Electronics, vol. 36, no. 3, pp. 339–344, 1993. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Gümüş, A. Türüt, and N. Yalçin, “Temperature dependent barrier characteristics of CrNiCo alloy Schottky contacts on n-type molecular-beam epitaxy GaAs,” Journal of Applied Physics, vol. 91, no. 1, pp. 245–250, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Tuǧluoǧlu, S. Karadeniz, M. Şahin, and H. Şafak, “Temperature dependence of current-voltage characteristics of Ag/p-SnSe Schottky diodes,” Applied Surface Science, vol. 233, no. 1–4, pp. 320–327, 2004. View at Publisher · View at Google Scholar · View at Scopus