About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 586462, 14 pages
http://dx.doi.org/10.1155/2013/586462
Review Article

Recent Advances in Stimuli-Responsive Photofunctional Materials Based on Accommodation of Chromophore into Layered Double Hydroxide Nanogallery

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Received 29 October 2012; Accepted 27 December 2012

Academic Editor: Su Chen

Copyright © 2013 Wu Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Irie, T. Fukaminato, T. Sasaki, N. Tamai, and T. Kawai, “A digital fluorescent molecular photoswitch,” Nature, vol. 420, no. 6917, pp. 759–760, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Löwe and C. Weder, “Oligo(p-phenylene vinylene) excimers as molecular probes: deformation-induced color changes in photoluminescent polymer blends,” Advanced Materials, vol. 14, no. 22, pp. 1625–1629, 2002.
  3. T. Mutai, H. Tomoda, T. Ohkawa, Y. Yabe, and K. Araki, “Switching of polymorph-dependent ESIPT luminescence of an imidazo[1,2-a]pyridine derivative,” Angewandte Chemie—International Edition, vol. 120, no. 49, pp. 9664–9666, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Kunzelman, M. Kinami, B. R. Crenshaw, J. D. Protasiewicz, and C. Weder, “Oligo(p-phenylene vinylene)s as a "new" class of piezochromic fluorophores,” Advanced Materials, vol. 20, no. 1, pp. 119–122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Fukaminato and M. Irie, “Reversible fluorescence wavelength shift based on photoinduced aggregate formation,” Advanced Materials, vol. 18, no. 24, pp. 3225–3228, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Chandrasekharan and L. A. Kelly, “A dual fluorescence temperature sensor based on perylene/exciplex interconversion,” Journal of the American Chemical Society, vol. 123, no. 40, pp. 9898–9899, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Kunzelman, B. R. Crenshaw, and C. Weder, “Self-assembly of chromogenic dyes—a new mechanism for humidity sensors,” Journal of Materials Chemistry, vol. 17, no. 29, pp. 2989–2991, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Xia and R. C. Advincula, “Decreased aggregation phenomena in polyfluorenes by introducing carbazole copolymer units,” Macromolecules, vol. 34, no. 17, pp. 5854–5859, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Rives, Layered Double Hydroxides: Present and Future, Nova Science, New York, NY, USA, 2001.
  10. F. Li and X. Duan, “Applications of layered double hydroxide,” Structure and Bonding, vol. 119, pp. 193–223, 2006. View at Publisher · View at Google Scholar
  11. S. P. Newman and W. Jones, “Synthesis, characterization and applications of layered double hydroxides containing organic guests,” New Journal of Chemistry, vol. 22, no. 2, pp. 105–115, 1998. View at Scopus
  12. D. P. Yan, J. Lu, M. Wei, D. G. Evans, and X. Duan, “Sulforhodamine B intercalated layered double hydroxide thin film with polarized photoluminescence,” Journal of Physical Chemistry B, vol. 113, no. 5, pp. 1381–1388, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. D. P. Yan, J. Lu, J. Ma, M. Wei, D. G. Evans, and X. Duan, “Benzocarbazole anions intercalated layered double hydroxide and its tunable fluorescence,” Physical Chemistry Chemical Physics, vol. 12, no. 45, pp. 15085–15092, 2010. View at Publisher · View at Google Scholar
  14. W. Shi, M. Wei, J. Lu et al., “Molecular orientation and fluorescence studies on naphthalene acetate intercalated Zn2Al layered double hydroxide,” Journal of Physical Chemistry C, vol. 112, no. 50, pp. 19886–19895, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. P. Yan, J. Lu, M. Wei et al., “Poly(p-phenylene) anionic derivative/layered double hydroxides ordered ultra thin films with blue luminescence by layer-by-layer assembly,” Angewandte Chemie—International Edition, vol. 48, no. 17, pp. 3073–3076, 2009. View at Publisher · View at Google Scholar
  16. D. P. Yan, J. Lu, J. Ma et al., “Anionic poly(p-phenylenevinylene)/layered double hydroxide ordered ultrathin films with multiple quantum well structure: a combined experimental and theoretical study,” Langmuir, vol. 26, no. 10, pp. 7007–7014, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Li, J. Lu, M. Wei, D. G. Evans, and X. Duan, “Tris(8-hydroxyquinoline-5-sulfonate)aluminum intercalated Mg-Al layered double hydroxide with blue luminescence by hydrothermal synthesis,” Advanced Functional Materials, vol. 20, no. 17, pp. 2848–2856, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. D. P. Yan, J. Lu, M. Wei, J. Ma, D. G. Evans, and X. Duan, “A combined study based on experiment and molecular dynamics: perylene tetracarboxylate intercalated in a layered double hydroxide matrix,” Physical Chemistry Chemical Physics, vol. 11, no. 40, pp. 9200–9209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. D. P. Yan, J. Lu, M. Wei, D. G. Evans, and X. Duan, “Recent advances in photofunctional guest/layered double hydroxide host composite systems and their applications: experimental and theoretical perspectives,” Journal of Materials Chemistry, vol. 21, pp. 13128–13139, 2011. View at Publisher · View at Google Scholar
  20. I. McCulloch, M. Heeney, C. Bailey et al., “Liquid-crystalline semiconducting polymers with high charge-carrier mobility,” Nature Materials, vol. 5, no. 4, pp. 328–333, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. Thyveetil, P. V. Coveney, H. C. Greenwell, and J. L. Suter, “Role of host layer flexibility in DNA guest intercalation revealed by computer simulation of layered nanomaterials,” Journal of the American Chemical Society, vol. 130, no. 37, pp. 12485–12495, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Tian, F. He, H. Zhang et al., “Thermal cycloaddition facilitated by orthogonal π-π organization through conformational transfer in a swivel-cruciform oligo (phenylenevinylene),” Angewandte Chemie—International Edition, vol. 46, no. 18, pp. 3245–3248, 2007. View at Publisher · View at Google Scholar
  23. H. Meier, “Conjugated oligomers with terminal donor-acceptor substitution,” Angewandte Chemie—International Edition, vol. 44, no. 17, pp. 2482–2506, 2005. View at Publisher · View at Google Scholar
  24. D. P. Yan, J. Lu, M. Wei, J. Ma, D. G. Evans, and X. Duan, “Reversibly thermochromic, fluorescent ultrathin films with a supramolecular architecture,” Angewandte Chemie—International Edition, vol. 50, no. 3, pp. 720–723, 2011. View at Publisher · View at Google Scholar
  25. X. Wang, J. Lu, W. Shi et al., “A thermochromic thin film based on host-guest interactions in a layered double hydroxide,” Langmuir, vol. 26, no. 2, pp. 1247–1253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Inouye, K. Tsuchiya, and T. Kitao, “New thermo-response dyes: coloration by the claisen rearrangement and intramolecular acid-base reaction,” Angewandte Chemie—International Edition, vol. 31, no. 2, pp. 204–205, 1992. View at Scopus
  27. A. Sarkar, S. Okada, H. Matsuzawa, H. Matsuda, and H. Nakanishi, “Novel polydiacetylenes for optical materials: beyond the conventional polydiacetylenes,” Journal of Materials Chemistry, vol. 10, no. 4, pp. 819–828, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. H. J. Cho, K. Seo, C. J. Lee, H. Yun, and J. Y. Chang, “Rodlike mesogenic molecules consisting of two diacetylenic groups: mesomorphic behavior and photoimaging,” Journal of Materials Chemistry, vol. 13, no. 5, pp. 986–990, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Y. Shi, Y. J. Lin, S. He et al., “Patterned fluorescence films with reversible thermal response based on the host-guest superarchitecture,” Journal of Materials Chemistry, vol. 21, pp. 11116–11122, 2011.
  30. Z. G. Chi and J. R. Xu, “New thermally stable piezofluorochromic aggregation-induced emission compounds,” Organic Letters, vol. 13, no. 4, pp. 556–559, 2011. View at Publisher · View at Google Scholar
  31. X. Zhang, Z. Chi, H. Li et al., “Piezofluorochromism of an aggregation-induced emission compound derived from tetraphenylethylene,” Chemistry, vol. 6, no. 3, pp. 808–811, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Chi, X. Zhang, B. Xu et al., “Recent advances in organic mechanofluorochromic materials,” Chemical Society Reviews, vol. 41, no. 10, pp. 3878–3896, 2012. View at Publisher · View at Google Scholar
  33. D. P. Yan, J. Lu, J. Ma et al., “Layered host-guest materials with reversible piezochromic luminescence,” Angewandte Chemie—International Edition, vol. 50, no. 31, pp. 7037–7040, 2011. View at Publisher · View at Google Scholar
  34. J. Zhang, Q. Zou, and H. Tian, “Photochromic materials: more than meets the eye,” Advanced Materials, vol. 25, no. 3, pp. 378–399, 2012. View at Publisher · View at Google Scholar
  35. T. F. Tan, P. L. Chen, H. M. Huang, and J. B. Meng, “Synthesis, characterization and photochromic studies in film of heterocycle-containing spirooxazines,” Tetrahedron, vol. 61, no. 34, pp. 8192–8198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Durr, “Perspective in photochromism-based on the l-5-eleetroeyclization of heteroanalogous pentadienyl anions,” Angewandte Chemie—International Edition, vol. 28, pp. 413–431, 1989.
  37. E. H. Kang, T. Bu, P. Jin, J. Sun, Y. Yang, and J. Shen, “Layer-by-layer deposited organic/inorganic hybrid multilayer films containing noncentrosymmetrically orientated azobenzene chromophores,” Langmuir, vol. 23, no. 14, pp. 7594–7601, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Tagaya, T. Kuwahara, S. Sato, J. I. Kadokawa, M. Karasu, and K. Chiba, “Photoisomerization of indolinespirobenzopyran in layered double hydroxides,” Journal of Materials Chemistry, vol. 3, no. 3, pp. 317–318, 1993. View at Scopus
  39. T. Kuwahara, H. Tagaya, and K. Chiba, “Photochromism of spiropyran dye in Li-Al layered double hydroxide,” Microporous Materials, vol. 4, no. 2-3, pp. 247–250, 1995. View at Scopus
  40. H. Tagaya, S. Sato, T. Kuwahara, J. I. Kadokawa, K. Masa, and K. Chiba, “Photoisomerization of indolinespirobenzopyran in anionic clay matrices of layered double hydroxides,” Journal of Materials Chemistry, vol. 4, no. 12, pp. 1907–1912, 1994. View at Scopus
  41. J. B. Han, D. P. Yan, W. Y. Shi et al., “Layer-by-layer ultrathin films of azobenzene-containing polymer/layered double hydroxides with reversible photoresponsive behavior,” Journal of Physical Chemistry B, vol. 114, no. 17, pp. 5678–5685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Chen, S. Xu, F. Zhang, D. G. Evans, and X. Duan, “Formation of photo- and thermo-stable layered double hydroxide films with photo-responsive wettability by intercalation of functionalized azobenzenes,” Chemical Engineering Science, vol. 64, no. 21, pp. 4350–4357, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. X. R. Wang, J. Lu, D. P. Yan, M. Wei, D. G. Evans, and X. Duan, “A photochromic thin film based on salicylideneaniline derivatives intercalated layered double hydroxide,” Chemical Physics Letters, vol. 493, no. 4-6, pp. 333–339, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Weder, C. Sarwa, A. Montali, C. Bastiaansen, and P. Smith, “Incorporation of photoluminescent polarizers into liquid crystal displays,” Science, vol. 279, no. 5352, pp. 835–837, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Zhou, Y. Lin, L. Monica Veca, K. A. Shiral Fernando, B. A. Harruff, and Y. P. Sun, “Luminescence polarization spectroscopy study of functionalized carbon nanotubes in a polymeric matrix,” Journal of Physical Chemistry B, vol. 110, no. 7, pp. 3001–3006, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. D. P. Yan, S. Qin, L. Chen et al., “Thin film of sulfonated zinc phthalocyanine/layered double hydroxide for achieving multiple quantum well structure and polarized luminescence,” Chemical Communications, vol. 46, no. 45, pp. 8654–8656, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. D. P. Yan, J. Lu, M. Wei et al., “Heterogeneous transparent ultrathin films with tunable-color luminescence based on the assembly of photoactive organic molecules and layered double hyroxides,” Advanced Functional Materials, vol. 21, no. 13, pp. 2497–2505, 2011. View at Publisher · View at Google Scholar
  48. G. Mingyuan, C. Lesser, S. Kirstein, E. Möhwald, A. L. Rogach, and H. Weller, “Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films,” Journal of Applied Physics, vol. 87, no. 5, pp. 2297–2302, 2000. View at Scopus
  49. W. Chung, K. Park, H. J. Yu, J. Kim, B. H. Chun, and S. H. Kim, “White emission using mixtures of CdSe quantum dots and PMMA as a phosphor,” Optical Materials, vol. 32, no. 4, pp. 515–521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. J. S. Bendall, M. Paderi, F. Ghigliotti et al., “Layer-by-layer all-inorganic quantum-dot-based LEDs: a simple procedure with robust performance,” Advanced Functional Materials, vol. 20, no. 19, pp. 3298–3302, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. D. P. Yan, J. Lu, J. Ma, M. Wei, D. G. Evans, and X. Duan, “Fabrication of an anionic polythiophene/layered double hydroxide ultrathin film showing red luminescence and reversible pH photoresponse,” AIChE Journal, vol. 57, no. 7, pp. 1926–1935, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. X. L. Ji, W. Y. Shi, S. T. Zhang, M. Wei, D. G. Evans, and X. Duan, “A ratiometric fluorescence sensor for Be2+ based on Beryllon II/layered double hydroxide ultrathin films,” Analytica Chimica Acta, vol. 728, pp. 77–85, 2012. View at Publisher · View at Google Scholar
  53. I. Roy and M. N. Gupta, “Smart polymeric materials: emerging biochemical applications,” Chemistry & Biology, vol. 10, no. 12, pp. 1161–1171, 2003.
  54. E. S. Gil and S. M. Hudson, “Stimuli-responsive polymers and their bio-conjugates,” Progress in Polymer Science, vol. 29, no. 12, pp. 1173–1222, 2004.
  55. W. Y. Shi, S. He, M. Wei, D. G. Evans, and X. Duan, “Optical pH sensor with rapid response based on a fluorescein-intercalated layered double hydroxide,” Advanced Functional Materials, vol. 20, no. 22, pp. 3856–3863, 2010. View at Publisher · View at Google Scholar
  56. H. N. Kim, Z. Guo, W. Zhu, J. Yoon, and H. Tian, “Recent progress on polymer-based fluorescent and colorimetric chemosensors,” Chemical Society Reviews, vol. 40, no. 1, pp. 79–93, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Yoon, E. W. Miller, Q. He, P. H. Do, and C. J. Chang, “A bright and specific fluorescent sensor for mercury in water, cells, and tissue,” Angewandte Chemie—International Edition, vol. 46, no. 35, pp. 6658–6661, 2007.
  58. J. V. Cizdziel and S. Gerstenberger, “Determination of total mercury in human hair and animal fur by combustion atomic absorption spectrometry,” Talanta, vol. 64, no. 4, pp. 918–921, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. S. C. Hight and J. Cheng, “Determination of methylmercury and estimation of total mercury in seafood using high performance liquid chromatography (HPLC) and inductively coupled plasma-mass spectrometry (ICP-MS): method development and validation,” Analytica Chimica Acta, vol. 567, no. 2, pp. 160–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Wang, G. Zhang, D. Zhang, D. Zhu, and B. Z. Tang, “Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature,” Journal of Materials Chemistry, vol. 20, no. 10, pp. 1858–1867, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. X. Tao, Y. Liu, and K. S. Schanze, “A conjugated polyelectrolyte-based fluorescence sensor for pyrophosphate,” Chemical Communications, no. 28, pp. 2914–2916, 2007. View at Publisher · View at Google Scholar
  62. Y. Cao, Y. Cui, Q. Zheng, S. Xiang, G. Qian, and B. Chen, “A microporous luminescent metal-organic framework for highly selective and sensitive sensing of Cu2+ in aqueous solution,” Chemical Communications, vol. 46, no. 30, pp. 5503–5505, 2010. View at Publisher · View at Google Scholar
  63. I. Onyido, A. R. Norris, and E. Buncel, “Biomolecule-mercury interactions: modalities of DNA base-mercury binding mechanisms. Remediation strategies,” Chemical Reviews, vol. 104, no. 12, pp. 5911–5929, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. N. S. Bloom, A. K. Grout, and E. M. Prestbo, “Development and complete validation of a method for the determination of dimethyl mercury in air and other media,” Analytica Chimica Acta, vol. 546, no. 1, pp. 92–101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. Z. Y. Sun, L. Jin, S. T. Zhang et al., “An optical sensor based on H-acid/layered double hydroxide composite film for the selective detection of mercury ion,” Analytica Chimica Acta, vol. 702, no. 1, pp. 95–101, 2011. View at Publisher · View at Google Scholar
  66. D. P. Yan, J. Lu, M. Wei, D. G. Evans, and X. Duan, “Luminescent ultrathin film of the anionic styrylbiphenyl derivatives/layered double hydroxide and its reversible sensing for heavy metal ions,” Physical Chemistry Chemical Physics, vol. 14, no. 24, pp. 8591–8598, 2012. View at Publisher · View at Google Scholar
  67. M. Ishida, Y. Naruta, and F. Tani, “A Porphyrin-related macrocycle with an embedded 1,10-phenanthroline moiety: fluorescent magnesium(II) ion sensor,” Angewandte Chemie—International Edition, vol. 49, no. 1, pp. 91–94, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. J. L. Lopez, A. Tárraga, A. Espinosa et al., “A new multifunctional ferrocenyl-substituted ferrocenophane derivative: optical and electronic properties and selective recognition of Mg2+ ions,” Chemistry, vol. 10, no. 7, pp. 1815–1826, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Jin, Z. J. Guo, Z. Y. Sun, A. Li, Q. Jin, and M. Wei, “Assembly of 8-aminonaphthalene-1,3,6-trisulfonate intercalated layered double hydroxide film for the selective detection of Mg2+,” Sensors and Actuators B, vol. 161, pp. 714–720, 2012.