About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 592464, 8 pages
http://dx.doi.org/10.1155/2013/592464
Research Article

Synthesis of Single-Walled Carbon Nanotubes: Effects of Active Metals, Catalyst Supports, and Metal Loading Percentage

1Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
2School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Seberang Perai Selatan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
3School of Engineering, Monash University, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
4School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seberang Perai Selatan, 14300 Nibong Tebal, Pulau Pinang, Malaysia

Received 12 April 2013; Revised 5 June 2013; Accepted 13 June 2013

Academic Editor: Shiren Wang

Copyright © 2013 Wei-Wen Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Andrews, D. Jacques, D. Qian, and T. Rantell, “Multiwall carbon nanotubes: synthesis and application,” Accounts of Chemical Research, vol. 35, no. 12, pp. 1008–1017, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Danafar, A. Fakhru'l-Razi, M. A. M. Salleh, and D. R. A. Biak, “Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes-A review,” Chemical Engineering Journal, vol. 155, no. 1-2, pp. 37–48, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Zarabadi-Poor, A. Badiei, A. A. Yousefi, B. D. Fahlman, and A. Abbasi, “Catalytic chemical vapour deposition of carbon nanotubes using Fe-doped alumina catalysts,” Catalysis Today, vol. 150, no. 1-2, pp. 100–106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Zhou, Z. Han, J. Wang et al., “Copper catalyzing growth of single-walled carbon nanotubes on substrates,” Nano Letters, vol. 6, no. 12, pp. 2987–2990, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Bhaviripudi, E. Mile, S. A. Steiner III et al., “CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts,” Journal of the American Chemical Society, vol. 129, no. 6, pp. 1516–1517, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Takagi, Y. Homma, H. Hibino, S. Suzuki, and Y. Kobayashi, “Single-walled carbon nanotube growth from highly activated metal nanoparticles,” Nano Letters, vol. 6, no. 12, pp. 2642–2645, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Yuan, L. Ding, H. Chu, Y. Feng, T. P. McNicholas, and J. Liu, “Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts,” Nano Letters, vol. 8, no. 8, pp. 2576–2579, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Bilu, R. Wencai, G. Libo et al., “Manganese-catalyzed surface growth of single-walled carbon nanotubes with high efficiency,” Journal of Physical Chemistry C, vol. 112, no. 49, pp. 19231–19235, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S.-Y. Lee, M. Yamada, and M. Miyake, “Synthesis of carbon nanotubes over gold nanoparticle supported catalysts,” Carbon, vol. 43, no. 13, pp. 2654–2663, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Tsoufis, L. Jankovic, D. Gournis, P. N. Trikalitis, and T. Bakas, “Evaluation of first-row transition metal oxides supported on clay minerals for catalytic growth of carbon nanostructures,” Materials Science and Engineering B, vol. 152, no. 1–3, pp. 44–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Qian, C. Wang, G. Ren, and B. Huang, “Surface growth of single-walled carbon nanotubes from ruthenium nanoparticles,” Applied Surface Science, vol. 256, no. 12, pp. 4038–4041, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Kumar and Y. Ando, “Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 6, pp. 3739–3758, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Hofmann, R. Blume, C. T. Wirth et al., “State of transition metal catalysts during carbon nanotube growth,” Journal of Physical Chemistry C, vol. 113, no. 5, pp. 1648–1656, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. D. Núñez, W. K. Maser, M. Carmen Mayoral, J. M. Andrés, and A. M. Benito, “Platelet-like catalyst design for high yield production of multi-walled carbon nanotubes by catalytic chemical vapor deposition,” Carbon, vol. 49, no. 7, pp. 2483–2491, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Igarashi, H. Murakami, Y. Murakami, S. Maruyama, and N. Nakashima, “Purification and characterization of zeolite-supported single-walled carbon nanotubes catalytically synthesized from ethanol,” Chemical Physics Letters, vol. 392, no. 4–6, pp. 529–532, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Schmidt, A. Boisen, E. Gustavsson et al., “Carbon nanotube templated growth of mesoporous zeolite single crystals,” Chemistry of Materials, vol. 13, no. 12, pp. 4416–4418, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. J. M. Cao, “Selective growth of carbon nantoubes on SiO2/Si substrate,” Applied Surface Science, vol. 253, no. 5, pp. 2460–2464, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Ohno, D. Takagi, K. Yamada, S. Chiashi, A. Tokura, and Y. Homma, “Growth of vertically aligned single-walled carbon nanotubes on alumina and sapphire substrates,” Japanese Journal of Applied Physics, vol. 47, no. 4, pp. 1956–1960, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. C.-T. Hsieh, Y.-T. Lin, J.-Y. Lin, and J.-L. Wei, “Synthesis of carbon nanotubes over Ni- and Co-supported CaCO3 catalysts using catalytic chemical vapor deposition,” Materials Chemistry and Physics, vol. 114, no. 2-3, pp. 702–708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. G.-Y. Xiong, D. Z. Wang, and Z. F. Ren, “Aligned millimeter-long carbon nanotube arrays grown on single crystal magnesia,” Carbon, vol. 44, no. 5, pp. 969–973, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Picher, E. Anglaret, R. Arenal, and V. Jourdain, “Processes controlling the diameter distribution of single-walled carbon nanotubes during catalytic chemical vapor deposition,” ACS Nano, vol. 5, no. 3, pp. 2118–2125, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Tian, M. Y. Timmermans, M. Partanen et al., “Growth of single-walled carbon nanotubes with controlled diameters and lengths by an aerosol method,” Carbon, vol. 49, no. 14, pp. 4636–4643, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Vanyorek, D. Loche, H. Katona et al., “Optimization of the catalytic chemical vapor deposition synthesis of multiwall carbon nanotubes on FeCo(Ni)/SiO2 aerogel catalysts by statistical design of experiments,” Journal of Physical Chemistry C, vol. 115, no. 13, pp. 5894–5902, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. H. S. Yang, L. Zhang, X. H. Dong et al., “Precise control of the number of walls formed during carbon nanotube growth using chemical vapor deposition,” Nanotechnology, vol. 23, no. 6, Article ID 065604, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. O. C. Carneiro, P. E. Anderson, N. M. Rodriguez, and R. T. K. Baker, “Synthesis of high purity narrow-width carbon nanotubes,” Carbon, vol. 50, no. 9, pp. 3200–3209, 2012. View at Scopus
  26. W.-W. Liu, A. Aziz, S.-P. Chai, C.-T. Tye, and A. R. Mohamed, “Broad bundles of single-walled carbon nanotube synthesized over Fe2O3/MgO via chemical vapor deposition of methane,” Nano, vol. 4, no. 2, pp. 77–81, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. W.-W. Liu, A. Aziz, S.-P. Chai, A. R. Mohamed, and C.-T. Tye, “Optimisation of reaction conditions for the synthesis of single-walled carbon nanotubes using response surface methodology,” Canadian Journal of Chemical Engineering, vol. 90, no. 2, pp. 489–505, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. W.-W. Liu, A. Azizan, S.-P. Chai, R. M. Abdul, and C.-T. Tye, “Preparation of iron oxide nanoparticles supported on magnesium oxide for producing high-quality single-walled carbon nanotubes,” New Carbon Materials, vol. 26, no. 4, pp. 255–261, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. W.-W. Liu, A. Aziz, S.-P. Chai, A. R. Mohamed, and C.-T. Tye, “The effect of carbon precursors (methane, benzene and camphor) on the quality of carbon nanotubes synthesised by the chemical vapour decomposition,” Physica E, vol. 43, no. 8, pp. 1535–1542, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, “Raman spectroscopy of carbon nanotubes,” Physics Reports, vol. 409, no. 2, pp. 47–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Moisala, A. G. Nasibulin, and E. I. Kauppinen, “The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes: a review,” Journal of Physics Condensed Matter, vol. 15, no. 42, pp. S3011–S3035, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. K. J. MacKenzie, O. M. Dunens, and A. T. Harris, “An updated review of synthesis parameters and growth mechanisms for carbon nanotubes in fluidized beds,” Industrial and Engineering Chemistry Research, vol. 49, no. 11, pp. 5323–5338, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. V. L. Kuznetsov, A. N. Usol'tseva, and Y. V. Butenko, “Mechanism of coking on metal catalyst surfaces: I. Thermodynamic analysis of nucleation,” Kinetics and Catalysis, vol. 44, no. 5, pp. 726–734, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza Filho, M. A. Pimenta, and R. Saito, “Single nanotube Raman spectroscopy,” Accounts of Chemical Research, vol. 35, no. 12, pp. 1070–1078, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Ago, K. Nakamura, S. Imamura, and M. Tsuji, “Growth of double-wall carbon nanotubes with diameter-controlled iron oxide nanoparticles supported on MgO,” Chemical Physics Letters, vol. 391, no. 4–6, pp. 308–313, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Jin, G. W. Wang, and Y. D. Li, “Catalytic growth of high quality single-walled carbon nanotubes over a Fe/MgO catalyst derived from a precursor containing Feitknecht compound,” Applied Catalysis A, vol. 445-446, pp. 121–127, 2012.
  37. H. Ago, K. Nakamura, N. Uehara, and M. Tsuji, “Roles of metal-support interaction in growth of single- and double-walled carbon nanotubes studied with diameter-controlled iron particles supported on MgO,” Journal of Physical Chemistry B, vol. 108, no. 49, pp. 18908–18915, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Ago, S. Imamura, T. Okazaki, T. Saito, M. Yumura, and M. Tsuji, “CVD growth of single-walled carbon nanotubes with narrow diameter distribution over Fe/MgO catalyst and their fluorescence spectroscopy,” Journal of Physical Chemistry B, vol. 109, no. 20, pp. 10035–10041, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. A.-C. Dupuis, “The catalyst in the CCVD of carbon nanotubes-a review,” Progress in Materials Science, vol. 50, no. 8, pp. 929–961, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Sun and J. C. Berg, “A review of the different techniques for solid surface acid-base characterization,” Advances in Colloid and Interface Science, vol. 105, no. 1–3, pp. 151–175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Kong, A. M. Cassell, and H. Dai, “Chemical vapor deposition of methane for single-walled carbon nanotubes,” Chemical Physics Letters, vol. 292, no. 4–6, pp. 567–574, 1998. View at Scopus
  42. A. M. Cassell, J. A. Raymakers, J. Kong, and H. Dai, “Large scale CVD synthesis of single-walled carbon nanotubes,” Journal of Physical Chemistry B, vol. 103, no. 31, pp. 6484–6492, 1999. View at Scopus
  43. J. E. Herrera, L. Balzano, A. Borgna, W. E. Alvarez, and D. E. Resasco, “Relationship between the structure/composition of Co-Mo catalysts and their ability to produce single-walled carbon nanotubes by CO disproportionation,” Journal of Catalysis, vol. 204, no. 1, pp. 129–145, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. X. Z. Liao, A. Serquis, Q. X. Jia, D. E. Peterson, Y. T. Zhu, and H. F. Xu, “Effect of catalyst composition on carbon nanotube growth,” Applied Physics Letters, vol. 82, no. 16, pp. 2694–2696, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Yao, L. K. L. Falk, R. E. Morjan, O. A. Nerushev, and E. E. B. Campbell, “Synthesis of carbon nanotube films by thermal CVD in the presence of supported catalyst particles. Part II: the nanotube film,” Journal of Materials Science, vol. 15, no. 9, pp. 583–594, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. K. B. Kouravelou and S. V. Sotirchos, “Dynamic study of carbon nanotubes production by chemical vapor deposition of alcohols,” Reviews on Advanced Materials Science, vol. 10, no. 3, pp. 243–248, 2005. View at Scopus
  47. L. Zheng, X. Liao, and Y. T. Zhu, “Parametric study of carbon nanotube growth via cobalt-catalyzed ethanol decomposition,” Materials Letters, vol. 60, no. 16, pp. 1968–1972, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Su, Y. Li, B. Maynor, A. Buldum, J. P. Lu, and J. Liu, “Lattice-oriented growth of single-walled carbon nanotubes,” Journal of Physical Chemistry B, vol. 104, no. 28, pp. 6507–6508, 2000. View at Scopus
  49. Y. Li, J. Liu, Y. Wang, and Z. L. Wang, “Preparation of monodispersed Fe-Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes,” Chemistry of Materials, vol. 13, no. 3, pp. 1008–1014, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Zhang, Y. Li, W. Kim, D. Wang, and H. Dai, “Imaging as-grown single-walled carbon nanotubes originated from isolated catalytic nanoparticles,” Applied Physics A, vol. 74, no. 3, pp. 325–328, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. R. M. German, Powder Metallurgy Science, vol. 24, Princeton, New Jersey, NJ, USA, 1984.