About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 594273, 8 pages
http://dx.doi.org/10.1155/2013/594273
Research Article

Composition and Performance of Nanostructured Zirconium Titanium Conversion Coating on Aluminum-Magnesium Alloys

1Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
2State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China

Received 13 June 2013; Accepted 11 July 2013

Academic Editor: Xinqing Chen

Copyright © 2013 Sheng-xue Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Okido, R. Ichino, S.-J. Kim, and S.-K. Jang, “Surface characteristics of chemical conversion coating for Mg-Al alloy,” Transactions of Nonferrous Metals Society of China, vol. 19, no. 4, pp. 892–897, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Kuang, Y. Xu, and G. Li, “Research advances on the surface treatment of aluminum magnesium alloy and its alloy,” Plating and Finishing, vol. 22, no. 1, pp. 16–20, 2000.
  3. M. Wu and Y. Sun, “Development of surface treatment for aluminum magnesium alloy and its alloys,” Surface Technology, vol. 32, no. 3, pp. 13–15, 2003.
  4. J. Zhang, C. Li, and G. Cao, “Corrosion resistance of anodically oxidized LY12 aluminum magnesium alloy alloy after modification with cerium nitrate and silane,” Electroplating & Finishing, vol. 29, no. 12, pp. 33–37, 2010.
  5. B. Liu, M. Yi, X. Xiong, et al., “Manufacture and corrosion-resistance of chemical conversion film of cast aluminium 104 alloy,” Surface Technology, vol. 29, no. 5, pp. 17–18, 2000.
  6. J. Li and N. Li, “A study of black nickel electroplating on AC aluminum magnesium alloy alloy anodic oxide coating,” Electroplating & Pollution Control, vol. 30, no. 2, pp. 37–40, 2010.
  7. J. Yang, Y. Li, Y. Ma, et al., “Effects of NaOH on micro-arc oxidation coating and its corrosion resistance of A356 alloy,” China Surface Engineering, vol. 21, no. 5, pp. 49–53, 2008.
  8. W. Zhang, “Discussion on the surface treatment and the conduction protecting technique for the surface of the aluminum magnesium alloy and its alloy,” Electronics Process Technology, vol. 26, no. 6, pp. 357–359, 2005.
  9. D. Chen, Z. Huang, and W. Li, “Study of chrome-free chemical conversion film on aluminium alloy,” Surface Technology, vol. 26, no. 12, pp. 38–39, 2005.
  10. A. E. Hughes, R. J. Taylor, and B. R. W. Hinton, “Chromate conversion coatings on 2024 Al alloy,” Surface and Interface Analysis, vol. 25, no. 4, pp. 223–234, 1997. View at Scopus
  11. Q. Meng and G. S. Frankel, “Characterization of chromate conversion coating on AA7075-T6 aluminum alloy,” Surface and Interface Analysis, vol. 36, no. 1, pp. 30–42, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Le Bozec, S. Joiret, D. Thierry, and D. Persson, “The role of chromate conversion coating in the filiform corrosion of coated aluminum alloys,” Journal of the Electrochemical Society, vol. 150, no. 12, pp. B561–B566, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Wang, “Conversion coatings treatment for Al and its alloys,” Electropating & Pollution Control, vol. 22, no. 6, pp. 24–25, 2002.
  14. X. Xiao, L. Xu, C. Deng, et al., “Chromium-free fluorozirconate-based chemical conversion coatings on aluminum magnesium alloy and aluminum magnesium alloy alloys,” Electroplating & Finishing, vol. 30, no. 10, pp. 37–40, 2011.
  15. A.-H. Yi, W.-F. Li, J. Du, S.-L. Mu, and N.-H. Liu, “Formation mechanism and properties of colored Ti/Zr-based conversion coating on aluminum alloy,” Journal of South China University of Technology (Natural Science), vol. 40, no. 1, pp. 101–124, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Li, Z. Meng, Y. Han, et al., “Study on the corrosion resistance of chromium-free phosphate rare earth conversion coating on 6061 aluminum alloy,” Paint & Coatings Industry, vol. 42, no. 8, pp. 69–72, 2012.
  17. L. Xu, R. Guo, C. Tang, et al., “Study on a golden-yellow conversion coating on aluminum alloy,” Surface Technology, vol. 40, no. 1, pp. 78–80, 2011.
  18. H. Yu, A. Yuan, D. Wei, X. Tan, and Y. Han, “Preparation and electrochemical characteristics of trivalent chromium-zirconium hybrid coatings on 6063 aluminum alloy,” CIESC Journal, vol. 62, no. 10, pp. 2861–2866, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. W. John and B. Ibber, “Chromate-free conversion coatings for aluminum magnesium alloy,” in Proceedings of the AESF Annual Technical Conference, pp. 425–433, 2002.
  20. R. Guo, J. Yang, and J. Kang, “Titanate-based conversion coatings on aluminum magnesium alloy alloys,” Electroplating & Finishing, vol. 25, no. 1, pp. 46–48, 2006.
  21. C. Wang, F. Jiang, and H. Lin, “The molybdate conversion coatings on LY12 aluminum alloy,” Rare Metal Materials and Engineering, vol. 32, no. 2, pp. 130–133, 2003. View at Scopus
  22. X. Fang, R. Guo, L. Zhang, et al., “Novel fluorosilicate conversion process on aluminum magnesium alloy alloys,” Electroplating & Finishing, vol. 31, no. 5, pp. 37–40, 2012.
  23. D.-C. Chen, W.-F. Li, W.-H. Gong, G.-X. Wu, M.-S. Huang, and Y.-Q. Liang, “Preparation of chrome-free chemical conversion coating on aluminum alloy and its performance,” The Chinese Journal of Nonferrous Metals, vol. 18, no. 10, pp. 1839–1845, 2008. View at Scopus
  24. J. Zhang, C. Yang, L. Pan, and C. Li, “Electrochemical study of corrosion resistance of cerium nitrate doped silane-based hybrid films on aluminum alloy 2A12,” Acta Metallurgica Sinica, vol. 44, no. 11, pp. 1372–1377, 2008. View at Scopus
  25. J. Wang, J. Wu, and G. Chen, “The technique of rare-earth conversion coatings on aluminum alloy,” Electrochemistry, vol. 9, no. 3, pp. 350–355, 2003.
  26. M. Vippola, S. Ahmaniemi, J. Keränen et al., “Aluminum phosphate sealed alumina coating: characterization of microstructure,” Materials Science and Engineering A, vol. 323, no. 1-2, pp. 1–8, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Xiong, L. Gu, X. Liu, Y. Wang, Y. Li, and Z. Wang, “Research development on substitutive processes for chromate conversion coatings concerning aluminum alloy,” Guangzhou Chemical Industry, vol. 40, no. 19, pp. 14–16, 2012.
  28. J.-M. Long, Z.-C. Guo, X.-Y. Han, and N. Yang, “Study of a new chromium-free conversion coating formed on ZnAl alloy,” Transactions of Materials and Heat Treatment, vol. 25, no. 5, pp. 1149–1153, 2004. View at Scopus
  29. M. Qi, C. Guan, and M. Ru, “Preparation and corrosion resistance of phytate conversion coating,” Materials Protection, vol. 45, no. 1, pp. 1–3, 2012.
  30. Y. Jiang, H. Zhou, and S. Zeng, “Performance of oxalate chemical conversion coating on magnesium alloy,” Materials Protection, vol. 42, no. 9, pp. 10–15, 2009.
  31. Y. Lv, J. Xiong, L. Chen, et al., “Process of chrome-free chemical conversion film on aluminum alloys,” Electroplating & Finishing, vol. 26, no. 12, pp. 25–28, 2007.
  32. N. Liu, W. Li, and J. Du, “Study on the structure and corrosion resistance of chromatic Ti-Zr based conversion layer on 6063 aluminum magnesium alloy,” Surface Technology, vol. 39, no. 5, pp. 45–47, 2010.
  33. X. Jin and J. D. Scantlebury, “An investigation of paint adhesion to chromate conversion coating on aluminum alloys,” Materials Protection, vol. 25, no. 4, pp. 4–9, 1992.