About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 603586, 6 pages
http://dx.doi.org/10.1155/2013/603586
Research Article

Surface Nanocrystallization of 3Cr13 Stainless Steel Induced by High-Current Pulsed Electron Beam Irradiation

1College of Science, Civil Aviation University of China, Tianjin 300300, China
2School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China

Received 7 December 2012; Accepted 1 February 2013

Academic Editor: Kemin Zhang

Copyright © 2013 Zhiyong Han et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. W. Cahn, “Nanostructured materials,” Nature, vol. 348, no. 6300, pp. 389–390, 1990. View at Scopus
  2. Z. B. Wang, N. R. Tao, W. P. Tong, J. Lu, and K. Lu, “Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment,” Acta Materialia, vol. 51, no. 14, pp. 4319–4329, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. B. Wang, N. R. Tao, S. Li et al., “Effect of surface nanocrystallization on friction and wear properties in low carbon steel,” Materials Science and Engineering A, vol. 352, no. 1-2, pp. 144–149, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. C. H. Chen, R. M. Ren, X. J. Zhao, and Y. J. Zhang, “Surface nanostructures in commercial pure Ti induced by high energy shot peening,” Transactions of Nonferrous Metals Society of China, vol. 14, no. 2, pp. 215–218, 2004. View at Scopus
  5. X. Wu, N. Tao, Y. Hong, B. Xu, J. Lu, and K. Lu, “Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of AL-alloy subjected to USSP,” Acta Materialia, vol. 50, no. 8, pp. 2075–2084, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Sato, N. Tsuji, Y. Minamino, and Y. Koizumi, “Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation,” Science and Technology of Advanced Materials, vol. 5, no. 1-2, pp. 145–152, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. D. Pogrebnjak, V. S. Ladysev, N. A. Pogrebnjak, et al., “Comparison of radiation damage and mechanical and tribological properties of α-Fe exposed to intense pulsed electron and ion beams,” Vacuum, vol. 58, no. 1, pp. 45–52, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. L. E. Xiaoyun, Y. Sha, Z. Weijiang, H. Baoxi, W. Yugang, and X. Jianming, “Computer simulation of thermal-mechanical effects of high intensity pulsed ion beams on a metal surface,” Surface and Coatings Technology, vol. 128-129, no. 1, pp. 381–386, 2000. View at Scopus
  9. J. X. Zou, T. Grosdidier, K. M. Zhang, and C. Dong, “Mechanisms of nanostructure and metastable phase formations in the surface melted layers of a HCPEB-treated D2 steel,” Acta Materialia, vol. 54, no. 20, pp. 5409–5419, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. K. M. Zhang, J. X. Zou, T. Grosdidier, and C. Dong, “Crater-formation-induced metastable structure in an AISI D2 steel treated with a pulsed electron beam,” Vacuum, vol. 86, no. 9, pp. 1273–1277, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. J. X. Zou, K. M. Zhang, S. Z. Hao, C. Dong, and T. Grosdidier, “Mechanisms of hardening, wear and corrosion improvement of 316 L stainless steel by low energy high current pulsed electron beam surface treatment,” Thin Solid Films, vol. 519, no. 4, pp. 1404–1415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. K. M. Zhang, J. X. Zou, B. Bolle, and T. Grosdidier, “Evolution of residual stress states in surface layers of an AISI D2 steel treated by low energy high current pulsed electron beam,” Vaccum, vol. 87, pp. 60–68, 2013.
  13. K. M. Zhang, J. X. Zou, T. Grosdidier, and C. Dong, “Microstructure and property modifications of an AISI H13 (4Cr5MoSiV) steel induced by pulsed electron beam treatment,” Journal of Vacuum Science and Technology A, vol. 28, no. 6, pp. 1349–1355, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Qin, X. G. Wang, C. Dong et al., “Temperature field and formation of crater on the surface induced by high current pulsed electron beam bombardment,” Acta Physica Sinica, vol. 52, no. 12, pp. 3043–3048, 2003. View at Scopus
  15. J. X. Zou, T. Grosdidier, K. M. Zhang, B. Gao, S. Z. Hao, and C. Dong, “Microstructures and phase formations in the surface layer of an AISI D2 steel treated with pulsed electron beam,” Journal of Alloys and Compounds, vol. 434-435, pp. 707–709, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Stähli and C. Sturzenegger, “On the formation of austentic boundary layers by short laser-pulse reaction with steel,” Scripta Metallurgica, vol. 12, no. 7, pp. 617–622, 1978. View at Scopus
  17. V. P. Rotshtein, D. I. Proskurovsky, G. E. Ozur, Y. U. F. Ivanov, and A. B. Markov, “Surface modification and alloying of metallic materials with low-energy high-current electron beams,” Surface and Coatings Technology, vol. 180-181, pp. 377–381, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Z. Tang, F. J. Xu, G. H. Fan, X. X. Ma, and L. Q. Wang, “Mechanisms of microstructure formations in M50 steel melted layer by high current pulsed electron beam,” Nuclear Instruments and Methods in Physics Research B, vol. 288, pp. 1–5, 2012.
  19. A. Bardenshtein, L. Bushnev, E. Dudarev, A. Markov, and V. Rotshtein, “Thermal stresses and twinning in thin copper samples irradiated with a high-current electron beam,” in Proceedings of the 1st International Congress on Radiation Physics, High Current Electronics and Modification of Materials, vol. 3, pp. 43–52, Tomsk, Russia, 2000.
  20. Q. F. Guan, Q. Y. Zhang, C. Dong, and G. T. Zou, “Deformation twining in single-crystal aluminum induced by high-current pulsed electron beam,” Journal of Materials Science, vol. 40, no. 18, pp. 5049–5052, 2005. View at Publisher · View at Google Scholar · View at Scopus