About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 621929, 4 pages
http://dx.doi.org/10.1155/2013/621929
Research Article

Facile Synthesis of Fe-Doped Titanate Nanotubes with Enhanced Photocatalytic Activity for Castor Oil Oxidation

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Received 13 December 2012; Accepted 31 December 2012

Academic Editor: Shao-Wen Cao

Copyright © 2013 Guozhu Fu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. X. Gao, C. S. Lao, Y. Ding, Z. L. Wang, and Z. L., “Metal/semiconductor core/shell nanodisks and nanotubes,” Advanced Functional Materials, vol. 16, pp. 53–62, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  2. P. Hu, F. Yuan, L. Bai, J. Li, and Y. Chen, “Plasma synthesis of large quantities of zinc oxide nanorods,” Journal of Physical Chemistry C, vol. 111, no. 1, pp. 194–200, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Hu, L. Y. Bai, L. J. Yu, J. L. Li, F. L. Yuan, and Y. F. Chen, “Shape-controlled synthesis of ZnS nanostructures: a simple and rapid method for one-dimensional materials by plasma,” Nanoscale Research Letters, vol. 4, pp. 1047–1053, 2009. View at Publisher · View at Google Scholar
  4. Z. Zhang, C. Shao, P. Zou et al., “In situ assembly of well-dispersed gold nanoparticles on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol,” Chemical Communications, vol. 47, no. 13, pp. 3906–3908, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Hu, N. Han, X. Zhang et al., “Fabrication of ZnO nanorod-assembled multishelled hollow spheres and enhanced performance in gas sensor,” Journal of Materials Chemistry, vol. 21, no. 37, pp. 14277–14284, 2011. View at Publisher · View at Google Scholar
  6. H. Yu, Z. Zhang, M. Han, X. Hao, and F. Zhu, “A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays,” Journal of the American Chemical Society, vol. 127, no. 8, pp. 2378–2379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Hu, X. Zhang, N. Han, W. Xiang, Y. Cao, and F. Yuan, “Solution-controlled self-assembly of ZnO nanorods into hollow microspheres,” Crystal Growth & Design, vol. 11, no. 5, pp. 1520–1526, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. C. C. Tsai and H. Teng, “Structural features of nanotubes synthesized from naoh treatment on TiO2 with different post-treatments,” Chemistry of Materials, vol. 18, pp. 367–373, 2006. View at Publisher · View at Google Scholar
  9. D. Li and Y. Xia, “Fabrication of titania nanofibers by electrospinning,” Nano Letters, vol. 3, no. 4, pp. 555–560, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Zhang, Y. Bando, and K. Wada, “Synthesis of coaxial nanotubes: titanium oxide sheathed with silicon oxide,” Journal of Materials Research, vol. 16, no. 5, pp. 1408–1412, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Hagfeldt and M. Gratzel, “Light-induced redox reactions in nanocrystalline systems,” Chemical Reviews, vol. 95, no. 1, pp. 49–68, 1995. View at Publisher · View at Google Scholar
  12. S. U. M. Khan, M. Al-Shahry, and W. B. Ingler, “Efficient photochemical water splitting by a chemically modified n-TiO2,” Science, vol. 297, no. 5590, pp. 2243–2245, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. Q. Chen, W. Z. Zhou, G. H. Du, and L. M. Peng, “Trititanate nanotubes made via a single alkali treatment,” Advanced Materials, vol. 14, no. 17, pp. 1208–1211, 2002. View at Publisher · View at Google Scholar
  14. A. Thorne, A. Kruth, D. Tunstall, J. T. S. Irvine, and W. Zhou, “Formation, structure, and stability of titanate nanotubes and their proton conductivity,” Journal of Physical Chemistry B, vol. 109, no. 12, pp. 5439–5444, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. C. C. Tsai and H. Teng, “Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment,” Chemistry of Materials, vol. 16, no. 22, pp. 4352–4358, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, “Formation of titanium oxide nanotube,” Langmuir, vol. 14, no. 12, pp. 3160–3163, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. X. H. Wang, J. G. Li, H. Kamiyama et al., “Pyrogenic iron(III)-doped TiO2 nanopowders synthesized in RF thermal plasma: phase formation, defect structure, band gap, and magnetic properties,” Journal of the American Chemical Society, vol. 127, pp. 10982–10990, 2005. View at Publisher · View at Google Scholar
  18. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, pp. 269–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Irie, Y. Watanabe, and K. Hashimoto, “Nitrogen-concentration dependence on photocatalytic activity of TiO2xNx powders,” Journal of Physical Chemistry B, vol. 107, no. 23, pp. 5483–5486, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. B. C. Cheng, Y. H. Xiao, G. S. Wu, and L. D. Zhang, “Controlled growth and properties of one-dimensional ZnO nanostructures with Ce as activator/dopant,” Advanced Functional Materials, vol. 14, no. 9, pp. 913–919, 2004. View at Publisher · View at Google Scholar
  21. B. D. Yuhas, D. O. Zitoun, P. J. Pauzauskie, R. R. He, and P. D. Yang, “Transition-metal doped zinc oxide nanowires,” Angewandte Chemie International Edition, vol. 45, no. 3, pp. 420–423, 2006. View at Publisher · View at Google Scholar
  22. J. H. He, C. S. Lao, L. J. Chen, D. Davidovic, and Z. L. Wang, “Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties,” Journal of the American Chemical Society, vol. 127, no. 47, pp. 16376–16377, 2005. View at Publisher · View at Google Scholar
  23. M. A. Khan, H. T. Jung, and O. B. Yang, “Synthesis and characterization of ultrahigh crystalline TiO2 nanotubes,” Journal of Physical Chemistry B, vol. 110, no. 13, pp. 6626–6630, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Frank, J. V. Geil, and R. Freaso, “Automatic determination of oxidation stability of oil and fatty products [Food quality control, vegetable and animal fats],” Food Technology, vol. 36, no. 6, pp. 71–76, 1982.
  25. M. K. Läubli and P. A. Bruttel, “Determination of the oxidative stability of fats and oils: comparison between the active oxygen method (AOCS Cd 12-57) and the rancimat method,” Journal of the American Oil Chemists' Society, vol. 63, no. 6, pp. 792–795, 1986. View at Publisher · View at Google Scholar
  26. L. Q. Jing, X. J. Sun, B. F. Xin, B. Q. Wang, W. M. Cai, and H. G. Fu, “The preparation and characterization of la doped TiO2 nanoparticles and their photocatalytic activity,” Journal of Solid State Chemistry, vol. 177, no. 10, pp. 3375–3382, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. X. T. Zhang, Y. M. Wang, C. M. Zhang et al., “Chemical modified titanate nanotubes and their stable luminescent properties,” Science in China Series B, vol. 35, pp. 1–6, 2005.