About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 627385, 11 pages
http://dx.doi.org/10.1155/2013/627385
Research Article

Solvothermal Synthesis of TiO2 Photocatalysts in Ketone Solvents with Low Boiling Points

1Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 807, Taiwan
2Department of Chemical and Biotechnology Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
3Department of Chemical Engineering, Da Nang University of Technology, Da Nang, Vietnam

Received 4 February 2013; Revised 13 April 2013; Accepted 18 April 2013

Academic Editor: Yanbao Zhao

Copyright © 2013 Chau Thanh Nam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” Journal of Photochemistry and Photobiology C, vol. 1, no. 1, pp. 1–21, 2000. View at Scopus
  2. M. Kitano, M. Matsuoka, M. Ueshima, and M. Anpo, “Recent developments in titanium oxide-based photocatalysts,” Applied Catalysis A, vol. 325, no. 1, pp. 1–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, “Titania nanotubes prepared by chemical processing,” Advanced Materials, vol. 11, no. 15, pp. 1307–1311, 1999.
  4. C. C. Wang and J. Y. Ying, “Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals,” Chemistry of Materials, vol. 11, no. 11, pp. 3113–3120, 1999. View at Scopus
  5. T. L. R. Hewer, E. C. C. Souza, T. S. Martins, E. N. S. Muccillo, and R. S. Freire, “Influence of neodymium ions on photocatalytic activity of TiO2 synthesized by sol-gel and precipitation methods,” Journal of Molecular Catalysis A, vol. 336, no. 1-2, pp. 58–63, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications and applications,” Chemical Reviews, vol. 107, no. 7, pp. 2891–2959, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Sreekantan and L. C. Wei, “Study on the formation and photocatalytic activity of titanate nanotubes synthesized via hydrothermal method,” Journal of Alloys and Compounds, vol. 490, no. 1-2, pp. 436–442, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Mozia, E. Borowiak-Paleń, J. Przepiórski et al., “Physico-chemical properties and possible photocatalytic applications of titanate nanotubes synthesized via hydrothermal method,” Journal of Physics and Chemistry of Solids, vol. 71, no. 3, pp. 263–272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, “Formation of titanium oxide nanotube,” Langmuir, vol. 14, no. 12, pp. 3160–3163, 1998. View at Scopus
  10. G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, and L. M. Peng, “Preparation and structure analysis of titanium oxide nanotubes,” Applied Physics Letters, vol. 79, no. 22, pp. 3702–3705, 2001.
  11. B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang, and N. Wang, “Formation mechanism of TiO2 nanotubes,” Applied Physics Letters, vol. 82, no. 2, pp. 281–283, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Poudel, W. Z. Wang, C. Dames et al., “Formation of crystallized titania nanotubes and their transformation into nanowires,” Nanotechnology, vol. 16, no. 9, pp. 1935–1940, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. A. Khan, H. T. Jung, and O. B. Yang, “Synthesis and characterization of ultrahigh crystalline TiO2 nanotubes,” Journal of Physical Chemistry B, vol. 110, no. 13, pp. 6626–6630, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Menzel, A. M. Peiró, J. R. Durrant, and M. S. P. Shaffer, “Impact of hydrothermal processing conditions on high aspect ratio titanate nanostructures,” Chemistry of Materials, vol. 18, no. 25, pp. 6059–6068, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Huang, Y. Cao, Q. Huang et al., “High-temperature formation of titanate nanotubes and the transformation mechanism of nanotubes into nanowires,” Crystal Growth and Design, vol. 9, no. 8, pp. 3632–3637, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. D. V. Bavykin and F. C. Walsh, “Elongated titanate nanostructures and their applications,” European Journal of Inorganic Chemistry, no. 8, pp. 977–997, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Kang, S. Y. Lee, C. H. Chung et al., “Characterization of a TiO2 photocatalyst synthesized by the solvothermal method and its catalytic performance for CHCl3 decomposition,” Journal of Photochemistry and Photobiology A, vol. 144, no. 2-3, pp. 185–191, 2001. View at Scopus
  18. S. Yin, Y. Fujishiro, J. Wu, M. Aki, and T. Sato, “Synthesis and photocatalytic properties of fibrous titania by solvothermal reactions,” Journal of Materials Processing Technology, vol. 137, no. 1–3, pp. 45–48, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Kominami, J. I. Kato, S. Y. Murakami et al., “Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities,” Catalysis Today, vol. 84, no. 3-4, pp. 181–189, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. R. K. Wahi, Y. Liu, J. C. Falkner, and V. L. Colvin, “Solvothermal synthesis and characterization of anatase TiO2 nanocrystals with ultrahigh surface area,” Journal of Colloid and Interface Science, vol. 302, no. 2, pp. 530–536, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. R. C. Xie and J. K. Shang, “Morphological control in solvothermal synthesis of titanium oxide,” Journal of Materials Science, vol. 42, no. 16, pp. 6583–6589, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Das, S. K. Panda, and S. Chaudhuri, “Solvent-controlled synthesis of TiO2 1D nanostructures: growth mechanism and characterization,” Journal of Crystal Growth, vol. 310, no. 16, pp. 3792–3799, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Yan, S. Feng, H. Lu et al., “Alcohol induced liquid-phase synthesis of rutile titania nanotubes,” Materials Science and Engineering B, vol. 172, no. 2, pp. 114–120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Santara and P. K. Giri, “Impact of reaction temperature, stirring and cosolvent on the solvothermal synthesis of anatase TiO2 and TiO2/titanate hybrid nanostructures: elucidating the growth mechanism,” Materials Chemistry and Physics, vol. 137, no. 3, pp. 928–936, 2013.
  25. G. Demazeau, “Solvothermal reactions: an original route for the synthesis of novel materials,” Journal of Materials Science, vol. 43, no. 7, pp. 2104–2114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. Q. R. Hu, S. L. Wang, P. Jiang, H. Xu, Y. Zhang, and W. H. Tang, “Synthesis of ZnO nanostructures in organic solvents and their photoluminescence properties,” Journal of Alloys and Compounds, vol. 496, no. 1-2, pp. 494–499, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Byrappa and T. Adschiri, “Hydrothermal technology for nanotechnology,” Progress in Crystal Growth and Characterization of Materials, vol. 53, no. 2, pp. 117–166, 2007.
  28. S. Yin, Y. Aita, M. Komatsu, J. Wang, Q. Tang, and T. Sato, “Synthesis of excellent visible-light responsive TiO2-XNy photocatalyst by a homogeneous precipitation- solvothermal process,” Journal of Materials Chemistry, vol. 15, no. 6, pp. 674–682, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. U. Sulaeman, S. Yin, and T. Sato, “Solvothermal synthesis and photocatalytic properties of nitrogen-doped SrTiO3 nanoparticles,” Journal of Nanomaterials, vol. 2010, Article ID 629727, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Kang, “Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol,” Journal of Molecular Catalysis A, vol. 197, no. 1-2, pp. 173–183, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Sclafani, L. Palmisano, and M. Schiavello, “Influence of the preparation methods of TiO2 on the photocatalytic degradation of phenol in aqueous dispersion,” Journal of Physical Chemistry, vol. 94, no. 2, pp. 829–832, 1990. View at Scopus
  32. R. Ma, K. Fukuda, T. Sasaki, M. Osada, and Y. Bando, “Structural features of titanate nanotubes/nanobelts revealed by raman, X-ray absorption fine structure and electron diffraction characterizations,” Journal of Physical Chemistry B, vol. 109, no. 13, pp. 6210–6214, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Elsanousi, E. M. Elssfah, J. Zhang, J. Lin, H. S. Song, and C. Tang, “Hydrothermal treatment duration effect on the transformation of titanate nanotubes into nanoribbons,” Journal of Physical Chemistry C, vol. 111, no. 39, pp. 14353–14357, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. D. L. Morgan, G. Triani, M. G. Blackford, N. A. Raftery, R. L. Frost, and E. R. Waclawik, “Alkaline hydrothermal kinetics in titanate nanostructure formation,” Journal of Materials Science, vol. 46, no. 2, pp. 548–557, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. R. A. Zárate, S. Fuentes, J. P. Wiff, V. M. Fuenzalida, and A. L. Cabrera, “Chemical composition and phase identification of sodium titanate nanostructures grown from titania by hydrothermal processing,” Journal of Physics and Chemistry of Solids, vol. 68, no. 4, pp. 628–637, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. R. A. Spurr and H. A. Myers, “Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer,” Analytical Chemistry, vol. 29, no. 5, pp. 760–762, 1957. View at Scopus
  37. T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” Journal of Raman Spectroscopy, vol. 7, no. 6, pp. 321–324, 1978.
  38. T. Ohsaka, “Temperature dependence of the Raman spectrum in anatase TiO2,” Journal of the Physical Society of Japan, vol. 48, no. 5, pp. 1661–1668, 1980. View at Scopus
  39. G. A. Tompsett, G. A. Bowmaker, R. P. Cooney, J. B. Metson, K. A. Rogers, and J. M. Seakins, “The Raman spectrum of brookite, TiO2 (Pbca, Z = 8),” Journal of Raman Spectroscopy, vol. 26, no. 1, pp. 57–62, 1995.
  40. B. L. Tian, Z. L. Du, Y. M. Ma et al., “Raman investigation of sodium titanate nanotubes under hydrostatic pressures up to 26.9 GPa,” Chinese Physics Letters, vol. 27, no. 2, Article ID 026103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Nicol and M. Y. Fong, “Raman spectrum and polymorphism of titanium dioxide at high pressures,” Journal of Chemical Physics, vol. 54, no. 7, pp. 3167–3170, 1971.
  42. F. Rojas, I. Kornhauser, C. Felipe et al., “Capillary condensation in heterogeneous mesoporous networks consisting of variable connectivity and pore-size correlation,” Physical Chemistry Chemical Physics, vol. 4, no. 11, pp. 2346–2355, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. A. J. Maira, J. M. Coronado, V. Augugliaro, K. L. Yeung, J. C. Conesa, and J. Soria, “Fourier transform infrared study of the performance of nanostructured TiO2 particles for the photocatalytic oxidation of gaseous toluene,” Journal of Catalysis, vol. 202, no. 2, pp. 413–420, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. G. S. Guo, C. N. He, Z. H. Wang, F. B. Gu, and D. M. Han, “Synthesis of titania and titanate nanomaterials and their application in environmental analytical chemistry,” Talanta, vol. 72, no. 5, pp. 1687–1692, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Jia, Y. Hu, Y. Tang, and L. Zhang, “Synthesis and photoelectrochemical behavior of nanocrystalline CdS film electrodes,” Electrochemistry Communications, vol. 8, no. 8, pp. 1381–1385, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. X. Sun and Y. Li, “Synthesis and characterization of ion-exchangeable titanate nanotubes,” Chemistry-A European Journal, vol. 9, no. 10, pp. 2229–2238, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Yu, J. Yu, B. Cheng, and M. Zhou, “Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons,” Journal of Solid State Chemistry, vol. 179, no. 2, pp. 349–354, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Carrera-Lospez and S. Castillo-Cervantes, “Effect of the phase composition and crystallite size of sol-gel TiO2 nanoparticles on the acetaldehyde photodecomposition,” Superficies y Vacio, vol. 25, no. 2, pp. 82–87, 2012.
  49. G. Demazeau, “Solvothermal and hydrothermal processes: the main physico-chemical factors involved and new trends,” Research on Chemical Intermediates, vol. 37, no. 2–5, pp. 107–123, 2011. View at Publisher · View at Google Scholar · View at Scopus