About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 642915, 11 pages
http://dx.doi.org/10.1155/2013/642915
Review Article

Graphene-Based Carbon Materials for Electrochemical Energy Storage

Division of Green Chemistry & Engineering Research, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600, Republic of Korea

Received 28 June 2013; Revised 20 August 2013; Accepted 20 August 2013

Academic Editor: Christian Brosseau

Copyright © 2013 Fei Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Electric field in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Stankovich, D. A. Dikin, G. H. B. Dommett et al., “Graphene-based composite materials,” Nature, vol. 442, no. 7100, pp. 282–286, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, no. 3, pp. 183–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. K. S. Novoselov, Z. Jiang, Y. Zhang et al., “Room-temperature quantum hall effect in graphene,” Science, vol. 315, no. 5817, p. 1379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature, vol. 446, no. 7131, pp. 60–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nature Nanotechnology, vol. 4, no. 4, pp. 217–224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nature Nanotechnology, vol. 3, no. 2, pp. 101–105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Zhang and G. Shi, “Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability,” Journal of Physical Chemistry C, vol. 115, no. 34, pp. 17206–17212, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Zheng and M. S. Kim, “Performance of modified graphite as anode material for lithium-ion secondary battery,” Carbon Letters, vol. 12, no. 4, pp. 243–248, 2011. View at Publisher · View at Google Scholar
  10. S. Bhardwaj, M. Sharon, T. Ishihara et al., “Carbon material from natural sources as an anode in lithium secondary battery,” Carbon Letters, vol. 8, no. 4, pp. 285–291, 2007. View at Publisher · View at Google Scholar
  11. J. Tarascon, “Key challenges in future Li-battery research,” Philosophical Transactions of the Royal Society A, vol. 368, no. 1923, pp. 3227–3241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Liu, F. Li, L. P. Ma, and H. Cheng, “Advanced materials for energy storage,” Advanced Materials, vol. 22, no. 8, pp. E28–E62, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Ji, Z. Lin, M. Alcoutlabi, and X. Zhang, “Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries,” Energy and Environmental Science, vol. 4, no. 8, pp. 2682–2689, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. D. Stoller, S. Park, Z. Yanwu, J. An, and R. S. Ruoff, “Graphene-Based ultracapacitors,” Nano Letters, vol. 8, no. 10, pp. 3498–3502, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Lin, Y. Liu, Y. Yao et al., “Superior capacitance of functionalized graphene,” Journal of Physical Chemistry C, vol. 115, no. 14, pp. 7120–7125, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Liu, S. Song, D. Xue, and H. Zhang, “Selective crystallization with preferred lithium-ion storage capability of inorganic materials,” Nanoscale Research Letters, vol. 7, article 149, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Wang, Y. Yang, Y. Liang et al., “LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries,” Angewandte Chemie—International Edition, vol. 50, no. 32, pp. 7364–7368, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Sun, Q. Wu, and G. Shi, “Graphene based new energy materials,” Energy and Environmental Science, vol. 4, no. 4, pp. 1113–1132, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Bai, C. Li, and G. Shi, “Functional composite materials based on chemically converted graphene,” Advanced Materials, vol. 23, no. 9, pp. 1089–1115, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Chen, W. Wei, W. Lv et al., “A graphene-based nanostructure with expanded ion transport channels for high rate Li-ion batteries,” Chemical Communications, vol. 48, no. 47, pp. 5904–5906, 2012. View at Publisher · View at Google Scholar
  21. M. F. El-Kady, V. Strong, S. Dubin, and R. B. Kaner, “Laser scribing of high-performance and flexible graphene-based electrochemical capacitors,” Science, vol. 335, no. 6074, pp. 1326–1330, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Yin, Y. Zhang, J. Kong et al., “Assembly of graphene sheets into hierarchical structures for high-performance energy storage,” ACS Nano, vol. 5, no. 5, pp. 3831–3838, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Liu, S. Song, D. Xue, and H. Zhang, “Folded structured graphene paper for high performance electrode materials,” Advanced Materials, vol. 24, no. 8, pp. 1089–1094, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Wang, C. Zhang, Z. Liu et al., “Nitrogen-doped graphene nanosheets with excellent lithium storage properties,” Journal of Materials Chemistry, vol. 21, no. 14, pp. 5430–5434, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Ma, X. Shao, and D. Cao, “Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study,” Journal of Materials Chemistry, vol. 22, no. 18, pp. 8911–8915, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. A. L. M. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey, and P. M. Ajayan, “Synthesis of nitrogen-doped graphene films for lithium battery application,” ACS Nano, vol. 4, no. 11, pp. 6337–6342, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Wu, W. Ren, L. Xu, F. Li, and H. Cheng, “Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries,” ACS Nano, vol. 5, no. 7, pp. 5463–5471, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Wen, X. Wang, S. Mao et al., “Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor,” Advanced Materials, vol. 24, no. 41, pp. 5610–5616, 2012. View at Publisher · View at Google Scholar
  29. Y. Zhu, S. Murali, M. D. Stoller et al., “Carbon-based supercapacitors produced by activation of graphene,” Science, vol. 332, no. 6037, pp. 1537–1541, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. X. Zhao, C. M. Hayner, M. C. Kung, and H. H. Kung, “Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications,” ACS Nano, vol. 5, no. 11, pp. 8739–8749, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Fang, Y. Lv, R. Che et al., “Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage,” Journal of the American Chemical Society, vol. 135, no. 4, pp. 1524–1530, 2013. View at Publisher · View at Google Scholar
  32. M. Segal, “Selling graphene by the ton,” Nature Nanotechnology, vol. 4, no. 10, pp. 612–614, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. Z. Wang, N. Li, Z. Shi, and Z. Gu, “Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air,” Nanotechnology, vol. 21, no. 17, Article ID 175602, 2010. View at Publisher · View at Google Scholar