About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 645050, 6 pages
http://dx.doi.org/10.1155/2013/645050
Research Article

A New Method for Determining the Nanocrystallite Size Distribution in Systems Where Chemical Reaction between Solid and a Gas Phase Occurs

West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Pułaskiego 10, 70-322 Szczecin, Poland

Received 5 February 2013; Accepted 9 March 2013

Academic Editor: Diego Gomez-Garcia

Copyright © 2013 Rafał Pelka and Walerian Arabczyk. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Karch, R. Birringer, and H. Gleiter, “Ceramics ductile at low temperature,” Nature, vol. 330, no. 6148, pp. 556–558, 1987. View at Scopus
  2. M. Ruhle, H. Dosch, E. J. Mittemejer, and M. H. van de Voorde, Eds., European White Book on Fundamental Research in Materials Science, Max-Planck Institute for Metals Research, Stuttgart, Germany, 2001.
  3. W. Lojkowski and H. J. Fecht, “Structure of intercrystalline interfaces,” Progress in Materials Science, vol. 45, no. 5, pp. 339–568, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Poliakoff and P. King, “Phenomenal fluids,” Nature, vol. 412, no. 6843, p. 125, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Gleiter, “Nanostructured materials: basic concepts and microstructure,” Acta Materialia, vol. 48, no. 1, pp. 1–29, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. I. E. Beck, V. I. Bukhtiyarov, I. Y. Pakharukov, V. I. Zaikovsky, V. V. Kriventsov, and V. N. Parmon, “Platinum nanoparticles on Al2O3: correlation between the particle size and activity in total methane oxidation,” Journal of Catalysis, vol. 268, no. 1, pp. 60–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Pielaszek, “FW 1/5/4/5 M method for determination of the grain size distribution from powder diffraction line profile,” Journal of Alloys and Compounds, vol. 382, no. 1-2, pp. 128–132, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Ganesan, H. K. Kuo, A. Saavedra, and R. J. De Angelis, “Particle size distribution function of supported metal catalysts by X-ray diffraction,” Journal of Catalysis, vol. 52, no. 2, pp. 310–320, 1978. View at Scopus
  9. T. Ungár, J. Gubicza, G. Ribárik, and A. Borbély, “Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals,” Journal of Applied Crystallography, vol. 34, pp. 298–310, 2001. View at Publisher · View at Google Scholar
  10. T. Ungár, “Characterization of nanocrystalline materials by X-ray line profile analysis,” Journal of Materials Science, vol. 42, no. 5, pp. 1584–1593, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Ida, T. Goto, and H. Hibino, “Particle statistics in synchrotron powder diffractometry,” Zeitschrift für Kristallographie Proceedings, vol. 1, pp. 69–74, 2011.
  12. W. Vogel, “Size distributions of supported metal catalysts: an analytical X-ray line profile fitting routine,” Journal of Catalysis, vol. 121, no. 2, pp. 356–363, 1990. View at Scopus
  13. W. Arabczyk and R. Wróbel, “Utilisation of XRD for the determination of the size distribution of nanocrystalline iron materials,” Diffusion and Defect Data B, vol. 94, pp. 235–238, 2003. View at Scopus
  14. R. Pelka and W. Arabczyk, “Studies of the kinetics of reaction between iron catalysts and ammonia-nitriding of nanocrystalline iron with parallel catalytic ammonia decomposition,” Topics in Catalysis, vol. 52, no. 11, pp. 1506–1516, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Arabczyk and R. Wróbel, “Study of the kinetics of nitriding of nanocrystalline iron using TG and XRD methods,” Diffusion and Defect Data B, vol. 94, pp. 185–188, 2003. View at Scopus
  16. W. Arabczyk and R. Pelka, “Studies of the kinetics of two parallel reactions: ammonia decomposition and nitriding of iron catalyst,” Journal of Physical Chemistry A, vol. 113, no. 2, pp. 411–416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Kiełbasa, R. Pelka, and W. Arabczyk, “Studies of the kinetics of ammonia decomposition on promoted nanocrystalline iron using gas phases of different nitriding degree,” Journal of Physical Chemistry A, vol. 114, no. 13, pp. 4531–4534, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Pelka, A. Pattek-Janczyk, and W. Arabczyk, “Studies of the oxidation of nanocrystalline iron with oxygen by means of TG, MS, and XRD methods,” Journal of Physical Chemistry C, vol. 112, no. 36, pp. 13992–13996, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Lubkowski, W. Arabczyk, B. Grzmil, B. Michalkiewicz, and A. Pattek-Janczyk, “Passivation and oxidation of an ammonia iron catalyst,” Applied Catalysis A, vol. 329, pp. 137–147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Arabczyk, W. Konicki, U. Narkiewicz, I. Jasińska, and K. Kałucki, “Kinetics of the iron carbide formation in the reaction of methane with nanocrystalline iron catalyst,” Applied Catalysis A, vol. 266, no. 2, pp. 135–145, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Arabczyk, W. Konicki, and U. Narkiewicz, “The size distribution of iron nanoparticles produced by the carburisation process,” Diffusion and Defect Data B, vol. 94, pp. 177–180, 2003. View at Scopus
  22. R. Wróbel and W. Arabczyk, “Solid-gas reaction with adsorption as the rate limiting step,” Journal of Physical Chemistry A, vol. 110, no. 29, pp. 9219–9224, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Ertl, Reactions at Solid Surfaces, Wiley, New Jersey, NJ, USA, 2009.
  24. I. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum,” The Journal of the American Chemical Society, vol. 40, no. 9, pp. 1361–1403, 1918. View at Scopus
  25. J. Benard, Ed., Adsorption on Metal Surfaces: An Integrated Approach (Studies in Surface Science And Catalysis Series, No. 13), Elsevier, New York, NY, USA, 1983.
  26. R. H. Fowler and E. A. Guggenheim, Statistical Thermodynamics, Cambridge Univeristy Press, Cambridge, UK, 1939.