About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 687501, 8 pages
http://dx.doi.org/10.1155/2013/687501
Research Article

Comparing the Electrochemical Performance of /C Modified by Mg Doping and MgO Coating

1Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
2State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China

Received 19 March 2013; Accepted 2 May 2013

Academic Editor: Xinqing Chen

Copyright © 2013 Jianjun Song et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, “Phospho-olivines as positive-electrode materials for rechargeable lithium batteries,” Journal of the Electrochemical Society, vol. 144, no. 4, pp. 1188–1194, 1997. View at Scopus
  2. Y. Liu, C. H. Mi, C. Z. Yuan, and X. G. Zhang, “Improvement of electrochemical and thermal stability of LiFePO4 cathode modified by CeO2,” Journal of Electroanalytical Chemistry, vol. 628, no. 1-2, pp. 73–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Gibot, C. Delacourt, P. Poizot, S. Levasseur, and C. Masquelier, “Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4,” Electrochemical Solid-State Letters, vol. 7, pp. 741–747, 2008.
  4. G. T. K. Fey, Y. G. Chen, and H. M. Kao, “Electrochemical properties of LiFePO4 prepared via ball-milling,” The Journal of Power Sources, vol. 189, no. 1, pp. 169–178, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Ma, B. H. Li, H. D. Du, C. J. Xu, and F. Y. Kang, “The effect of vanadium on physicochemical and electrochemical performances of LiFePO4 cathode for lithium battery,” Journal of the Electrochemical Society, vol. 158, no. 1, pp. A26–A32, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. C. Ge, X. D. Yan, J. Liu et al., “An optimized Ni doped LiFePO4/C nanocomposite with excellent rate performance,” Electrochimica Acta, vol. 55, no. 20, pp. 5886–5890, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Y. Chung, J. T. Bloking, and Y. M. Chiang, “Electronically conductive phospho-olivines as lithium storage electrodes,” Nature Materials, vol. 1, no. 2, pp. 123–128, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. J. W. Yao, F. Wu, X. P. Qiu, N. Li, and Y. F. Su, “Effect of CeO2-coating on the electrochemical performances of LiFePO4/C cathode material,” Electrochimica Acta, vol. 56, no. 16, pp. 5587–5592, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Yang, X. Z. Liao, Z. F. Ma, B. F. Wang, L. He, and Y. S. He, “Superior high-rate cycling performance of LiFePO4/C-PPy composite at 55°C,” Electrochemistry Communications, vol. 11, no. 6, pp. 1277–1280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. W. Oh, S. T. Myung, S. M. Oh, C. S. Yoon, K. Amine, and Y. K. Sun, “Polyvinylpyrrolidone-assisted synthesis of microscale C-LiFePO4 with high tap density as positive electrode materials for lithium batteries,” Electrochimica Acta, vol. 55, no. 3, pp. 1193–1199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. G. T. K. Fey and T. L. Lu, “Morphological characterization of LiFePO4/C composite cathode materials synthesized via a carboxylic acid route,” The Journal of Power Sources, vol. 178, no. 2, pp. 807–814, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Jin, C. P. Yang, X. H. Rui, T. Cheng, and C. H. Chen, “V2O3 modified LiFePO4/C composite with improved electrochemical performance,” The Journal of Power Sources, vol. 196, no. 13, pp. 5623–5630, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Liu and J. Y. Xie, “Synthesis and characterization of LiFe0.9Mg0.1PO4/nano-carbon webs composite cathode,” Journal of Materials Processing Technology, vol. 209, no. 1, pp. 477–481, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. D. Li, S. X. Zhao, C. W. Nan, and B. H. Li, “Electrochemical performance of SiO2-coated LiFePO4 cathode materials for lithium ion battery,” Journal of Alloys and Compounds, vol. 509, no. 3, pp. 957–960, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. H. H. Chang, C. C. Chang, C. Y. Su, H. C. Wu, M. H. Yang, and N. L. Wu, “Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries,” The Journal of Power Sources, vol. 185, no. 1, pp. 466–472, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Cui, X. L. Zhao, and R. S. Guo, “Enhanced electrochemical properties of LiFePO4 cathode material by CuO and carbon co-coating,” Journal of Alloys and Compounds, vol. 490, no. 1-2, pp. 236–240, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Mladenov, R. Stoyanova, E. Zhecheva, and S. Vassilev, “Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO2 electrodes,” Electrochemistry Communications, vol. 3, no. 8, pp. 410–416, 2001.
  18. C. C. Chang, J. Y. Kim, and P. N. Kumta, “Synthesis and electrochemical characterization of divalent cation-incorporated lithium nickel oxide,” Journal of the Electrochemical Society, vol. 147, no. 5, pp. 1722–1729, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. W. S. Yoon, K. W. Nam, D. Jang et al., “Structural study of the coating effect on the thermal stability of charged MgO-coated LiNi0.8Co0.2O2 cathodes investigated by in situ XRD,” The Journal of Power Sources, vol. 217, no. 1, pp. 128–134, 2012. View at Publisher · View at Google Scholar
  20. J. Zhai, M. S. Zhao, D. D. Wang, and Y. Q. Qiao, “Effect of MgO nanolayer coated on Li3V2(PO4)3/C cathode material for lithium-ion battery,” Journal of Alloys and Compounds, vol. 502, no. 2, pp. 401–406, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Wagemaker, B. L. Ellis, D. Lützenkirchen-Hecht, F. M. Mulder, and L. F. Nazar, “Proof of supervalent doping in olivine LiFePO4,” Chemistry of Materials, vol. 20, no. 20, pp. 6313–6315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. W. J. Zhang, “Structure and performance of LiFePO4 cathode materials: a review,” The Journal of Power Sources, vol. 196, no. 6, pp. 2962–2970, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. G. X. Wang, L. Yang, Y. Chen, J. Z. Wang, S. Bewlay, and H. K. Liu, “An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries,” Electrochimica Acta, vol. 50, no. 24, pp. 4649–4654, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. J. L. Liu, R. R. Jiang, X. Y. Wang, T. Huang, and A. S. Yu, “The defect chemistry of LiFePO4 prepared by hydrothermal method at different pH values,” The Journal of Power Sources, vol. 194, no. 1, pp. 536–540, 2009. View at Publisher · View at Google Scholar · View at Scopus