About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 693486, 7 pages
http://dx.doi.org/10.1155/2013/693486
Research Article

Preparation of Size-Controlled Silver Nanoparticles and Chitin-Based Composites and Their Antimicrobial Activities

1Faculty of System Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Tokyo 191-0065, Japan
2Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-1324, Japan
3Aeromedical Laboratory, Japan Air Self-Defense Force, Saitama 350-1394, Japan
4Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
5Institute of Medical Science, Dokkyo Medical University, Tochigi 321-0293, Japan
6Department of Health Crisis Management, National Institute of Public Health, Wako, Saitama 351-0197, Japan
7Department of Global Infectious Diseases and Tropical Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan

Received 16 January 2013; Accepted 13 February 2013

Academic Editor: Zhenhui Kang

Copyright © 2013 Vinh Quang Nguyen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Panacek, L. Kvitek, R. Prucek et al., “Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity,” Journal of Physical Chemistry B, vol. 110, no. 33, pp. 16248–16253, 2006. View at Publisher · View at Google Scholar
  2. A. Kumar, P. K. Vemula, P. M. Ajayan, and G. John, “Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil,” Nature Materials, vol. 7, no. 3, pp. 236–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Sharma, N. Ahmad, A. Prakash, V. N. Singh, A. K. Ghoash, and B. R. Mehta, “Synthesis of crystalline AG nanoparticles, (Ag NPs) from microorganisms,” Materials Sciences and Applications, vol. 1, no. 1, pp. 1–7, 2010. View at Publisher · View at Google Scholar
  4. D. Li and S. Komarneni, “Microwave-assisted synthesis of Ag nanophases and their optical properties,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 12, pp. 8035–8042, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Navaladian, B. Viswanathan, T. K. Varadarajan, and R. P. Viswanath, “Microwave-assisted rapid synthesis of anisotropic Ag nanoparticles by solid state transformation,” Nanotechnology, vol. 19, no. 4, Article ID 045603, 2008. View at Publisher · View at Google Scholar
  6. S. Navaladian, B. Viswanathan, R. P. Viswanath, and T. K. Varadarajan, “Thermal decomposition as route for silver nanoparticles,” Nanoscale Research Letters, vol. 2, no. 1, pp. 44–48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Vigneshwaran, N. M. Ashtaputre, P. V. Varadarajan, R. P. Nachane, K. M. Paralikar, and R. H. Balasubramanya, “Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus,” Materials Letters, vol. 61, no. 6, pp. 1413–1418, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Z. Kassaee, A. Akhavan, N. Sheikh, and R. Beteshobabrud, “γ-ray synthesis of starch-stabilized silver nanoparticles with antibacterial activities,” Radiation Physics and Chemistry, vol. 77, no. 9, pp. 1074–1078, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. G. N. Xu, X. L. Qiao, X. L. Qiu, and J. G. Chen, “Preparation and characterization of stable monodisperse silver nanoparticles via photoreduction,” Colloids and Surfaces A, vol. 320, no. 1–3, pp. 222–226, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Raveendran, J. Fu, and S. L. Wallen, “Completely “green” synthesis and stabilization of metal nanoparticles,” Journal of the American Chemical Society, vol. 125, no. 46, pp. 13940–13941, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Vigneshwaran, R. P. Nachane, R. H. Balasubramanya, and P. V. Varadarajan, “A novel one-pot “green” synthesis of stable silver nanoparticles using soluble starch,” Carbohydrate Research, vol. 341, no. 12, pp. 2012–2018, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. I. O. Sosa, C. Noguez, and R. G. Barrera, “Optical properties of metal nanoparticles with arbitrary shapes,” Journal of Physical Chemistry B, vol. 107, no. 26, pp. 6269–6275, 2003. View at Scopus
  13. I. Sondi and B. Salopek-Sondi, “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria,” Journal of Colloid and Interface Science, vol. 275, no. 1, pp. 177–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. J. R. Morones, J. L. Elechiguerra, A. Camacho et al., “The bactericidal effect of silver nanoparticles,” Nanotechnology, vol. 16, no. 10, pp. 2346–2353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. X. L. Cao, C. Cheng, Y. L. Ma, and C. S. Zhao, “Preparation of silver nanoparticles with antimicrobial activities and the researches of their biocompatibilities,” Journal of Materials Science: Materials in Medicine, vol. 21, no. 10, pp. 2861–2868, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Pallavicini, A. Taglietti, G. Dacarro et al., “Self-assembled monolayers of silver nanoparticles firmly grafted on glass surfaces: low Ag+ release for an efficient antibacterial activity,” Journal of Colloid and Interface Science, vol. 350, no. 1, pp. 110–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Dallas, V. K. Sharma, and R. Zboril, “Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives,” Advances in Colloid and Interface Science, vol. 166, no. 1-2, pp. 119–135, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. J. L. Elechiguerra, J. L. Burt, J. R. Morones et al., “Interaction of silver nanoparticles with HIV-1,” Journal of Nanobiotechnology, vol. 3, article 6, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. H. H. Lara, N. V. Ayala-Nuñez, L. Ixtepan-Turrent, and C. Rodriguez-Padilla, “Mode of antiviral action of silver nanoparticles against HIV-1,” Journal of Nanobiotechnology, vol. 8, article 1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. K. J. Kim, W. S. Sung, B. K. Suh et al., “Antifungal activity and mode of action of silver nano-particles on Candida albicans,” BioMetals, vol. 22, no. 2, pp. 235–242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J. P. Wise Sr., B. C. Goodale, S. S. Wise et al., “Silver nanospheres are cytotoxic and genotoxic to fish cells,” Aquatic Toxicology, vol. 97, no. 1, pp. 34–41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Navarro, F. Piccapietra, B. Wagner et al., “Toxicity of silver nanoparticles to Chlamydomonas reinhardtii,” Environmental Science and Technology, vol. 42, no. 23, pp. 8959–8964, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. L. K. Braydich-Stolle, B. Lucas, A. Schrand et al., “Silver nanoparticles disrupt GDNF/Fyn kinase signaling in spermatogonial stem cells,” Toxicological Sciences, vol. 116, no. 2, pp. 577–589, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Mori, T. Tagawa, M. Fujita et al., “Simple and environmentally friendly preparation and size control of silver nanoparticles using an inhomogeneous system with silver-containing glass powder,” Journal Nanoparticles Research, vol. 13, no. 7, pp. 2799–2806, 2011. View at Publisher · View at Google Scholar
  25. C. Shi, Y. Zhu, X. Ran, M. Wang, Y. Su, and T. Cheng, “Therapeutic potential of chitosan and its derivatives in regenerative medicine,” Journal of Surgical Research, vol. 133, no. 2, pp. 185–192, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Dutta, S. Tripathi, and P. K. Dutta, “Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food application,” Food Science and Technology International, vol. 18, no. 1, pp. 20–31, 2012.
  27. M. D. Abramoff, P. J. Magelhaes, and S. J. Ram, “Image processing with ImageJ,” Biophotonics International, vol. 11, no. 7, pp. 36–42, 2004.
  28. R. Araujo, A. G. Rodrigues, and C. Pina-Vaz, “A fast, practical and reproducible procedure for the standardization of the cell density of an Aspergillus suspension,” Journal of Medical Microbiology, vol. 53, no. 8, pp. 783–786, 2004. View at Publisher · View at Google Scholar · View at Scopus