About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 695107, 5 pages
Research Article

Near-Infrared Indocyanine Materials for Bioanalysis and Nano-TiO2 Photoanodes of Solar Cell

College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China

Received 30 March 2013; Revised 25 May 2013; Accepted 3 June 2013

Academic Editor: Xinqing Chen

Copyright © 2013 Liqiu Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Y. Li, Y. L. Fang, and S. Xu, “Squaraine dye sensitized TiO2 nanocomposites with enhanced visible-light photocatalytic activity,” Materials Letters, vol. 93, pp. 345–348, 2013.
  2. Y. Prostota, O. D. Kachkovsky, L. V. Reis, and P. F. Santos, “New unsymmetrical squaraine dyes derived from imidazo[1, 5-a]pyridine,” Dyes and Pigments, vol. 96, pp. 554–562, 2013.
  3. A. S. Tatikolov, Z. A. Krasnaya, L. A. Shvedova, and V. A. Kuzmin, “Effects of chromophore interaction in photophysics and photochemistry of cyanine dyes,” International Journal of Photoenergy, vol. 2, no. 1, pp. 23–30, 2000. View at Scopus
  4. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at Scopus
  5. K. Sayama, K. Hara, N. Mori et al., “Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain,” Chemical Communications, no. 13, pp. 1173–1174, 2000. View at Scopus
  6. P. V. Kamat and G. C. Schatz, “Nanotechnology for next generation solar cells,” Journal of Physical Chemistry C, vol. 113, no. 35, pp. 15473–15475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Z. Xiao, S. H. Turkyilmaz, and B. D. Smith, “Convenient synthesis of multivalent zinc(II)—dipicolylamine complexes for molecular recognition,” Tetrahedron Letters, vol. 54, pp. 861–864, 2013.
  8. K. C. Hannah and B. A. Armitage, “DNA-templated assembly of helical cyanine dye aggregates: a supramolecular chain polymerization,” Accounts of Chemical Research, vol. 37, no. 11, pp. 845–853, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Endo and Y. Nakamura, “A binary Cy3 aptamer probe composed of folded modules,” Analytical Biochemistry, vol. 400, no. 1, pp. 103–109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Kang, O. Kaczmarek, J. Liebscher, and L. Dahne, “Prevention of H-aggregates formation in Cy5 labeled macromolecules,” International Journal of Polymer Science, vol. 2010, Article ID 264781, 7 pages, 2010. View at Publisher · View at Google Scholar
  11. K. M. Shafeekh, M. K. A. Rahim, M. C. Basheer, C. H. Suresh, and S. Das, “Highly selective and sensitive colourimetric detection of Hg2+ ions by unsymmetrical squaraine dyes,” Dyes and Pigments, vol. 96, pp. 714–721, 2013.
  12. M. C. Basheer, U. Santhosh, S. Alex, K. G. Thomas, C. H. Suresh, and S. Das, “Design and synthesis of squaraine based near infrared fluorescent probes,” Tetrahedron, vol. 63, no. 7, pp. 1617–1623, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Wang, X. Peng, R. Zhang, J. Cui, G. Xu, and F. Wang, “Syntheses and spectral properties of fluorescent trimethine sulfo-3H-indocyanine dyes,” Dyes and Pigments, vol. 54, no. 2, pp. 107–111, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Wang, X. Peng, F. Song et al., “New near-infrared indocyanines and their spectral properties in SiO2 sol-gel,” Dyes and Pigments, vol. 61, no. 2, pp. 103–107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Fillion and J. L. Luche, Synthetic Organic Sonochemistry, Plenum Press, New York, NY, USA, 1998.
  16. L. Buriol, T. S. München, C. P. Frizzo et al., “Resourceful synthesis of pyrazolo [1, 5-a] pyrimidines under ultrasound irradiation,” Ultrasonics Sonochemistry, vol. 20, no. 5, pp. 1139–1143, 2013.
  17. T. Tedeschi, S. Sforza, S. Ye et al., “Fast and easy colorimetric tests for single mismatch recognition by PNA-DNA duplexes with the diethylthiadicarbocyanine dye and succinyl-β-cyclodextrin,” Journal of Biochemical and Biophysical Methods, vol. 70, no. 5, pp. 735–741, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Y. Hao and X. W. Zhou, Biochemistry and Molecular Biology Experiments, Higher Education Press, Beijing, China, 2009.
  19. B. K. Kılıc, E. Gur, and S. Tuzemen, “Nanoporous ZnO photoelectrode for dye-sensitized solar cell,” Journal of Nanomaterials, vol. 2012, Article ID 474656, 7 pages, 2012. View at Publisher · View at Google Scholar
  20. S. Kathirvel, H. S. Chen, C. C. Su, H. H. Wang, C. Y. Li, and W. R. Li, “Preparation of smooth surface TiO2 photoanode for high energy conversion efficiency in dye-sensitized solar cells,” Journal of Nanomaterials, vol. 2013, 8 pages, 2013. View at Publisher · View at Google Scholar