About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 695276, 7 pages
http://dx.doi.org/10.1155/2013/695276
Research Article

Development for High-Accuracy In Vitro Assay of Vascular Endothelial Growth Factor Using Nanomagnetically Labeled Immunoassay

1MagQu Co., Ltd., Xindian District, New Taipei City 231, Taiwan
2Department of Surgery & Hepatitis Research Center, National Taiwan University Hospital, Taipei 100, Taiwan
3Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
4Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan
5Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
6Department of Electro-Optical Engineering, Kun Shan University, Yongkang District, Tainan City 710, Taiwan

Received 25 February 2013; Revised 24 August 2013; Accepted 26 August 2013

Academic Editor: Oleg Petracic

Copyright © 2013 C. C. Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Nanomagnetically labeled immunoassays have been demonstrated to be promisingly applied in clinical diagnosis. In this work, by using antibody-functionalized magnetic nanoparticles and a high-temperature superconducting quantum interference device ac magnetosusceptometer, the assay properties for vascular endothelial growth factor (VEGF) in serum are investigated. By utilizing the assay method so-called immunomagnetic reduction, the properties of assaying VEGF are explored. In addition, the VEGF concentrations in serum samples of normal people and patients with either colorectal or hepatocellular cancer are detected. The experimental results show that the low-detection limit for assaying VEGF is 10 pg/mL, which is much lower than the clinical cut-off VEGF concentration of 50 pg/mL for diagnosing malignancy. Besides, there are no significant interference effects on assaying VEGF from hemoglobin, conjugated bilirubin, and triglyceride. The VEGF concentrations in serum samples donated by normal people and patients with hepatocellular carcinoma or colorectal cancer are detected. A clear difference in VEGF concentrations between these two groups is found. These results reveal the feasibility of applying nanomagnetically labeled immunoassay to clinics.