About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 702679, 8 pages
http://dx.doi.org/10.1155/2013/702679
Research Article

Synthesis of h- and α-MoO3 by Refluxing and Calcination Combination: Phase and Morphology Transformation, Photocatalysis, and Photosensitization

1Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
2Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
3Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
4Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand

Received 29 April 2013; Accepted 18 June 2013

Academic Editor: Chunyi Zhi

Copyright © 2013 Pannipa Wongkrua et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Hexagonal molybdenum oxide (h-MoO3) nano- and microrods were successfully synthesized by refluxing of (NH4)6Mo7O24·4H2O solutions with the pH 1 at 90°C for 1, 3, 5, and 7 h and were further transformed into orthorhombic molybdenum oxide (α-MoO3) microplates by calcination at 450°C for 6 h. These selected products were used to determine the degradation of methylene blue dye under 35 W xenon lamp for 0–180 min, due to the photocatalysis and photosensitization processes. In this research, catalytic activity of the metastable h-MoO3 has higher efficiency than that of the thermodynamically stable α-MoO3. Their phase and morphology transformation was also explained according to the experimental results.