About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 710175, 19 pages
http://dx.doi.org/10.1155/2013/710175
Review Article

A Review on Nanomaterial Dispersion, Microstructure, and Mechanical Properties of Carbon Nanotube and Nanofiber Reinforced Cementitious Composites

1Fibrous Materials Research Group (FMRG), School of Engineering, University of Minho, 4800-058 Guimaraes, Portugal
2Department of Civil Engineering, University of Minho, 4800-058 Guimaraes, Portugal

Received 11 March 2013; Accepted 28 May 2013

Academic Editor: Tianxi Liu

Copyright © 2013 Shama Parveen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Akkaya, S. P. Shah, and M. Ghandehari, “Influence of fiber dispersion on the performance of microfiber reinforced cement composites,” American Concrete Institute, vol. 216, pp. 1–18, 2003.
  2. J. M. Makar and J. J. Beaudoin, “Carbon nanotubes and their applications in the construction industry,” in Proceedings of the 1st International Symposium on Nanotechnology in Construction, pp. 331–341, Paisley, Scotland, June 2003.
  3. G. Li, “Properties of high-volume fly ash concrete incorporating nano-SiO2,” Cement and Concrete Research, vol. 34, no. 6, pp. 1043–1049, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Qing, Z. Zenan, K. Deyu, and C. Rongshen, “Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume,” Construction and Building Materials, vol. 21, no. 3, pp. 539–545, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. K. L. Lin, W. C. Chang, D. F. Lin, H. L. Luo, and M. C. Tsai, “Effects of nano-SiO2 and different ash particle sizes on sludge ash-cement mortar,” Journal of Environmental Management, vol. 88, no. 4, pp. 708–714, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Li, H.-G. Xiao, J. Yuan, and J. Ou, “Microstructure of cement mortar with nano-particles,” Composites Part B, vol. 35, no. 2, pp. 185–189, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Li, M.-H. Zhang, and J.-P. Ou, “Abrasion resistance of concrete containing nano-particles for pavement,” Wear, vol. 260, no. 11-12, pp. 1262–1266, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Han, X. Guan, and J. Ou, “Specific resistance and pressure-sensitivity of cement paste admixing with nano-TiO2 and carbon fiber,” Journal of the Chinese Ceramic Society, vol. 32, no. 7, pp. 884–887, 2004. View at Scopus
  9. G. Xiong, M. Deng, L. Xu, and M. Tang, “Properties of cement-based composites by doping nano-TiO2,” Journal of the Chinese Ceramic Society, vol. 34, no. 9, pp. 1158–1161, 2006. View at Scopus
  10. B. Y. Lee and K. E. Kurtis, “Influence of TiO2 nanoparticles on early C3S hydration,” Journal of the American Ceramic Society, vol. 93, no. 10, pp. 3399–3405, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Cassar, “Nanotechnology and photocatalysis in cementitious materials,” in Proceedings of the 2nd International Symposium on Nanotechnology in Construction, pp. 277–683, NANOC, Bilbao, Spain, November 2005.
  12. S. J. Chen, F. G. Collins, A. J. N. Macleod, Z. Pan, W. H. Duan, and C. M. Wang, “Carbon nanotube-cement composites: a retrospect,” IES Journal Part A, vol. 4, no. 4, pp. 254–265, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Pacheco-Torgal and S. Jalali, “Nanotechnology: advantages and drawbacks in the field of construction and building materials,” Construction and Building Materials, vol. 25, no. 2, pp. 582–590, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. R. J.-M. Pellenq, A. Kushima, R. Shahsavari et al., “A realistic molecular model of cement hydrates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 38, pp. 16102–16107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. J. Allen, J. J. Thomas, and H. M. Jennings, “Composition and density of nanoscale calcium-silicate-hydrate in cement,” Nature Materials, vol. 6, no. 4, pp. 311–316, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Mondal, Nanomechanical properties of cementitious materials [Ph.D. thesis], Civil and environment engineering. Northwestern University, Evanston, Ill, USA, 2008.
  17. D. C. MacLaren and M. A. White, “Cement: its chemistry and properties,” Journal of Chemical Education, vol. 80, no. 6, pp. 623–635, 2003. View at Scopus
  18. I. Odler, “Hydration, setting and hardening of Portland cement,” in Lea's Chemistry of Cement and Concrete, pp. 241–297, Butterworth & Heinemann, 1998.
  19. J. M. Abdoveis, An examination of concrete durability [M.S. thesis], MIT, 2003.
  20. M. Djuric, J. Ranogajec, R. Omorjan, and S. Miletic, “Sulfate corrosion of portland cement-pure and blended with 30% of fly ash,” Cement and Concrete Research, vol. 26, no. 9, pp. 1295–1300, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Czernin, Chemistry and Physics of Cement for Civil EngineersCo, Chemical Publishing, New York, NY, USA, 1962.
  22. S. D. Beyea, B. J. Balcom, T. W. Bremner et al., “The influence of shrinkage-cracking on the drying behaviour of White Portland cement using Single-Point Imaging (SPI),” Solid State Nuclear Magnetic Resonance, vol. 13, no. 1-2, pp. 93–100, 1998. View at Scopus
  23. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, “C60: buckminsterfullerene,” Nature, vol. 318, no. 6042, pp. 162–163, 1985. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991. View at Scopus
  25. T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber, “Structure and electronic properties of carbon nanotubes,” Journal of Physical Chemistry B, vol. 104, no. 13, pp. 2794–2809, 2000. View at Scopus
  26. S. Rana, R. Alagirusamy, and M. Joshi, “A review on carbon epoxy nanocomposites,” Journal of Reinforced Plastics and Composites, vol. 28, no. 4, pp. 461–487, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Khare and S. Bose, “Carbon nanotube based composites-a review,” Journal of Minerals & Materials Characterization & Engineering, vol. 4, no. 1, pp. 31–46, 2005.
  28. X.-L. Xie, Y.-W. Mai, and X.-P. Zhou, “Dispersion and alignment of carbon nanotubes in polymer matrix: a review,” Materials Science and Engineering R: Reports, vol. 49, no. 4, pp. 89–112, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Szleifer and R. Yerushalmi-Rozen, “Polymers and carbon nanotubes—dimensionality, interactions and nanotechnology,” Polymer, vol. 46, no. 19, pp. 7803–7818, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. K.-T. Lau and D. Hui, “The revolutionary creation of new advanced materials—carbon nanotube composites,” Composites Part B, vol. 33, no. 4, pp. 263–277, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. E. T. Thostenson, Z. Ren, and T.-W. Chou, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Composites Science and Technology, vol. 61, no. 13, pp. 1899–1912, 2001. View at Scopus
  32. K. Tanaka, T. Yamabe, and K. Fukui, The Science and Technology of Carbon Nanotubes, Elsevier, Oxford, UK, 1999.
  33. P. M. Ajayan, L. S. Schadler, and P. V. Braun, Nanocomposite Science and Technology, Wiley-VCH, Weinheim, Germany, 2003.
  34. M. H. Al-Saleh and U. Sundararaj, “A review of vapor grown carbon nanofiber/polymer conductive composites,” Carbon, vol. 47, no. 1, pp. 2–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. T. V. Hughes, Chambers CR. Manufacture of Carbon Filaments, US Patent 405, 1889.
  36. L. V. Radushkevich and V. M. Lukyanovich, “The structure of carbon forming in thermal decomposition of carbon monoxide on an iron catalyst,” Zhurnal Fizicheskoi Khimii, vol. 26, pp. 88–95, 1952.
  37. V. Z. Mordkovich, “Carbon nanofibers: a new ultrahigh-strength material for chemical technology,” Theoretical Foundations of Chemical Engineering, vol. 37, no. 5, pp. 429–438, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. B. O. Lee, W. J. Woo, and M.-S. Kim, “Mechanical properties and nanostructure of cement-based materials reinforced with carbon nanofibers and polyvinyl alcohol (PVA) microfibers,” Macromolecular Materials and Engineering, vol. 286, no. 2, pp. 114–118, 2001. View at Scopus
  39. P. Coquay, E. Flahaut, E. De Grave, A. Peigney, R. E. Vandenberghe, and C. Laurent, “Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs). 2. the CNT-Fe/Co-MgAl2O4 system,” Journal of Physical Chemistry B, vol. 109, no. 38, pp. 17825–17830, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Hammel, X. Tang, M. Trampert et al., “Carbon nanofibers for composite applications,” Carbon, vol. 42, no. 5-6, pp. 1153–1158, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Kuzuya, W. In-Hwang, S. Hirako, Y. Hishikawa, and S. Motojima, “Preparation, morphology, and growth mechanism of carbon nanocoils,” Chemical Vapor Deposition, vol. 8, no. 2, pp. 57–62, 2002.
  42. K. Mukhopadhyay, D. Porwal, D. Lal, K. Ram, and G. N. Mathur, “Synthesis of coiled/straight carbon nanofibers by catalytic chemical vapor deposition,” Carbon, vol. 42, no. 15, pp. 3254–3256, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Brandl, G. Marginean, V. Chirila, and W. Warschewski, “Production and characterisation of vapour grown carbon fiber/polypropylene composites,” Carbon, vol. 42, no. 1, pp. 5–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. G. G. Tibbetts, M. L. Lake, K. L. Strong, and B. P. Rice, “A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites,” Composites Science and Technology, vol. 67, no. 7-8, pp. 1709–1718, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Miyagawa, M. J. Rich, and L. T. Drzal, “Thermo-physical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers,” Thermochimica Acta, vol. 442, no. 1-2, pp. 67–73, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. E. T. Thostenson, C. Li, and T.-W. Chou, “Nanocomposites in context,” Composites Science and Technology, vol. 65, no. 3-4, pp. 491–516, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Uchida, D. P. Anderson, M. L. Minus, and S. Kumar, “Morphology and modulus of vapor grown carbon nano fibers,” Journal of Materials Science, vol. 41, no. 18, pp. 5851–5856, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, and E. Voelkl, “Patterned growth of individual and multiple vertically aligned carbon nanofibers,” Applied Physics Letters, vol. 76, no. 24, pp. 3555–3557, 2000. View at Scopus
  49. M. Endo, Y. A. Kim, M. Ezaka et al., “Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofibers,” Nano Letters, vol. 3, no. 6, pp. 723–726, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff, and M. Korobov, “Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes,” Journal of Physical Chemistry B, vol. 104, no. 38, pp. 8911–8915, 2000. View at Scopus
  51. L. Vaisman, G. Marom, and H. D. Wagner, “Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers,” Advanced Functional Materials, vol. 16, no. 3, pp. 357–363, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Bystrzejewski, A. Huczko, H. Lange, T. Gemming, B. Büchner, and M. H. Rümmeli, “Dispersion and diameter separation of multi-wall carbon nanotubes in aqueous solutions,” Journal of Colloid and Interface Science, vol. 345, no. 2, pp. 138–142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. J. I. Paredes and M. Burghard, “Dispersions of individual single-walled carbon nanotubes of high length,” Langmuir, vol. 20, no. 12, pp. 5149–5152, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Pang, G. Xu, S. Yuan, Y. Tan, and F. He, “Dispersing carbon nanotubes in aqueous solutions by a silicon surfactant: experimental and molecular dynamics simulation study,” Colloids and Surfaces A, vol. 350, no. 1-3, pp. 101–108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Peng, L. B. Alemany, J. L. Margrave, and V. N. Khabashesku, “Sidewall carboxylic acid functionalization of single-walled carbon nanotubes,” Journal of the American Chemical Society, vol. 125, no. 49, pp. 15174–15182, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Wang, Z. Iqbal, and S. V. Malhotra, “Functionalization of carbon nanotubes with amines and enzymes,” Chemical Physics Letters, vol. 402, no. 1-3, pp. 96–101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. V. Lavskaya, L. G. Bulusheva, A. V. Okotrub, N. F. Yudanov, D. V. Vyalikh, and A. Fonseca, “Comparative study of fluorinated single- and few-wall carbon nanotubes by X-ray photoelectron and X-ray absorption spectroscopy,” Carbon, vol. 47, no. 7, pp. 1629–1636, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Felten, C. Bittencourt, J. J. Pireaux, G. Van Lier, and J. C. Charlier, “Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments,” Journal of Applied Physics, vol. 98, no. 7, Article ID 074308, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. Z. N. Utegulov, D. B. Mast, P. He, D. Shi, and R. F. Gilland, “Functionalization of single-walled carbon nanotubes using isotropic plasma treatment: resonant Raman spectroscopy study,” Journal of Applied Physics, vol. 97, no. 10, Article ID 104324, pp. 1–4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Wang, Z. Iqbal, and S. Mitra, “Rapidly functionalized, water-dispersed carbon nanotubes at high concentration,” Journal of the American Chemical Society, vol. 128, no. 1, pp. 95–99, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. J. M. Gonzalez-Dominguez, Y. Martınez-Rubi, M. Diez-Pascual et al., “Reactive fillers based on SWCNTs functionalized with matrix-based moieties for the production of epoxy composites with superior and tunable properties,” Nanotechnology, vol. 23, no. 28, Article ID 285702, 2012.
  62. J. U. Lee, J. Huh, K. H. Kim, C. Park, and W. H. Jo, “Aqueous suspension of carbon nanotubes via non-covalent functionalization with oligothiophene-terminated poly(ethylene glycol),” Carbon, vol. 45, no. 5, pp. 1051–1057, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. X. Xin, G. Xu, T. Zhao et al., “Dispersing carbon nanotubes in aqueous solutions by a starlike block copolymer,” Journal of Physical Chemistry C, vol. 112, no. 42, pp. 16377–16384, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. E. Nativ-Roth, R. Shvartzman-Cohen, C. Bounioux et al., “Physical adsorption of block copolymers to SWNT and MWNT: a nonwrapping mechanism,” Macromolecules, vol. 40, no. 10, pp. 3676–3685, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. R. Haggenmueller, S. S. Rahatekar, J. A. Fagan et al., “Comparison of the quality of aqueous dispersions of single wall carbon nanotubes using surfactants and biomolecules,” Langmuir, vol. 24, no. 9, pp. 5070–5078, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Sabba and E. L. Thomas, “High-concentration dispersion of single-wall carbon nanotubes,” Macromolecules, vol. 37, no. 13, pp. 4815–4820, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Zhu, M. Yudasaka, M. Zhang, and S. Iijima, “Dispersing carbon nanotubes in water: a noncovalent and nonorganic way,” Journal of Physical Chemistry B, vol. 108, no. 31, pp. 11317–11320, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. P. C. Ma, J.-K. Kim, and B. Z. Tang, “Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites,” Composites Science and Technology, vol. 67, no. 14, pp. 2965–2972, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. N. G. Sahoo, Y. C. Jung, H. J. Yoo, and J. W. Cho, “Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites,” Macromolecular Chemistry and Physics, vol. 207, no. 19, pp. 1773–1780, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. S.-M. Yuen, C.-C. M. Ma, Y.-Y. Lin, and H.-C. Kuan, “Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite,” Composites Science and Technology, vol. 67, no. 11-12, pp. 2564–2573, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. A. A. Koval'chuk, V. G. Shevchenko, A. N. Shchegolikhin, P. M. Nedorezova, A. N. Klyamkina, and A. M. Aladyshev, “Effect of carbon nanotube functionalization on the structural and mechanical properties of polypropylene/MWCNT composites,” Macromolecules, vol. 41, no. 20, pp. 7536–7542, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. M. T. Byrne, W. P. McNamee, and Y. K. Gun'ko, “Chemical functionalization of carbon nanotubes for the mechanical reinforcement of polystyrene composites,” Nanotechnology, vol. 19, no. 41, Article ID 415707, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. K. H. Kim and W. H. Jo, “Improvement of tensile properties of poly(methyl methacrylate) by dispersing multi-walled carbon nanotubes functionalized with poly(3-hexylthiophene)-graft-poly(methyl methacrylate),” Composites Science and Technology, vol. 68, no. 9, pp. 2120–2124, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. Y.-H. Liao, O. Marietta-Tondin, Z. Liang, C. Zhang, and B. Wang, “Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites,” Materials Science and Engineering A, vol. 385, no. 1-2, pp. 175–181, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. K. Gopalakrishnan, B. Birgisson, P. Taylor, and N. O. Attoh-Okine, Nanotechnology in Civil InfrAstructure a paradigm Shift, Springer, Heidelberg, Germany, 2011.
  76. F. P. Cota, T. H. Panzera, M. A. Schiavon et al., “Full factorial design analysis of carbon nanotube polymer-cement composites,” Materials Research, vol. 15, no. 4, pp. 573–580, 2012. View at Publisher · View at Google Scholar
  77. A. Yazdanbakhsh, Z. C. Grasley, B. Tyson, and R. K. Abu Al-Rub, “Carbon nano filaments in cementitious materials: Some issues on dispersion and interfacial bond,” in ACI Fall 2009 Convention, pp. 31–34, November 2009. View at Scopus
  78. A. Yazdanbakhsh, Z. Grasley, B. Tyson, and R. K. Abu Al-Rub, “Distribution of carbon nanofibers and nanotubes in cementitious composites,” Transportation Research Record, no. 2142, pp. 89–95, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. D. P. Bentz, E. J. Garboczi, C. J. Haecker, and O. M. Jensen, “Effects of cement particle size distribution on performance properties of Portland cement-based materials,” Cement and Concrete Research, vol. 29, no. 10, pp. 1663–1671, 1999. View at Scopus
  80. A. Yazdanbakhsh and Z. Grasley, “The theoretical maximum achievable dispersion of nanoinclusions in cement paste,” Cement and Concrete Research, vol. 42, no. 6, pp. 798–804, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. M. S. Konsta-Gdoutos, Z. S. Metaxa, and S. P. Shah, “Highly dispersed carbon nanotube reinforced cement based materials,” Cement and Concrete Research, vol. 40, no. 7, pp. 1052–1059, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. Z. S. Metaxa, M. S. Konsta-Gdoutos, and S. P. Shah, “Mechanical properties and nanostructure of cement-based materials reinforced with carbon nanofibers and Polyvinyl Alcohol (PVA) microfibers,” in ACI Spring 2010 Convention, pp. 115–126, March 2010. View at Scopus
  83. J. Luo, Z. Duan, and H. Li, “The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites,” Physica Status Solidi A, vol. 206, no. 12, pp. 2783–2790, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, “High weight fraction surfactant solubilization of single-wall carbon nanotubes in water,” Nano Letters, vol. 3, no. 2, pp. 269–273, 2003. View at Publisher · View at Google Scholar · View at Scopus
  85. X. Yu and E. Kwon, “A carbon nanotube/cement composite with piezoresistive properties,” Smart Materials and Structures, vol. 18, no. 5, Article ID 055010, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Cwirzen, K. Habermehl-Cwirzen, and V. Penttala, “Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites,” Advances in Cement Research, vol. 20, no. 2, pp. 65–73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. V. P. Veedu, Multifunctional cementitious nanocomposite material and methods of making the same, Patent: US, 7666327 B1, 2010.
  88. F. Azhari, Cement-Based Sensors for Structural Health Monitoring. Dissertation for the Master Degree of Applied Science, University of British Columbia, Vancouver, Canada, 2008.
  89. F. Azhari and N. Banthia, “Structural health monitoring using piezoresistive cementitious composites,” in Proceedings of the 2nd International Conference on Sustainable Construction Materials and Technologies, Ancona, Italy, June.
  90. F. Collins, J. Lambert, and W. H. Duan, “The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures,” Cement and Concrete Composites, vol. 34, no. 2, pp. 201–207, 2012. View at Publisher · View at Google Scholar · View at Scopus
  91. R. Rixom and N. Mailvaganam, Chemical Admixtures Handbook for Concreteed, E & FN Spon, London, UK, 3rd edition, 1999.
  92. D. D. L. Chung, “Improving cement-based materials by using silica fume,” Journal of Materials Science, vol. 37, no. 4, pp. 673–682, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. A. M. Neville, Properties of Concrete, Pearson Education Limited, New York, NY, USA, 2005.
  94. D. P. Bentz, O. M. Jensen, A. M. Coats, and F. P. Glasser, “Influence of silica fume on diffusivity in cement-based materials. I. Experimental and computer modeling studies on cement pastes,” Cement and Concrete Research, vol. 30, no. 6, pp. 953–962, 2000. View at Publisher · View at Google Scholar · View at Scopus
  95. H. Toutanji, S. McNeil, and Z. Bayasi, “Chloride permeability and impact resistance of polypropylene-fiber-reinforced silica fume concrete,” Cement and Concrete Research, vol. 28, no. 7, pp. 961–968, 1998. View at Scopus
  96. D. D. L. Chung, “Dispersion of short fibers in cement,” Journal of Materials in Civil Engineering, vol. 17, no. 4, pp. 379–383, 2005. View at Publisher · View at Google Scholar
  97. F. Sanchez and C. Ince, “Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites,” Composites Science and Technology, vol. 69, no. 7-8, pp. 1310–1318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. F. Sanchez, “Carbon nanofiber/cement composites: challenges and promises as structural materials,” International Journal of Materials and Structural Integrity, vol. 3, no. 2-3, pp. 217–226, 2009. View at Publisher · View at Google Scholar
  99. G. Y. Li, P. M. Wang, and X. Zhao, “Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites,” Cement and Concrete Composites, vol. 29, no. 5, pp. 377–382, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. F. Sanchez, L. Zhang, and C. Ince, “Multi-scale performance and durability of carbon nanofiber/cement composites,” in Proceedings of the 3rd International Symposium on Nanotechnology in Construction, vol. 3, pp. 345–350, 2009.
  101. G. Y. Li, P. M. Wang, and X. Zhao, “Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes,” Carbon, vol. 43, no. 6, pp. 1239–1245, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. L. I. Nasibulina, I. V. Anoshkin, A. G. Nasibulin, A. Cwirzen, V. Penttala, and E. I. Kauppinen, “Effect of carbon nanotube aqueous dispersion quality on mechanical properties of cement composite,” Journal of Nanomaterials, vol. 2012, Article ID 169262, 2012. View at Publisher · View at Google Scholar · View at Scopus
  103. B. Han, K. Zhang, X. Yu, E. Kwon, and J. Ou, “Electrical characteristics and pressure-sensitive response measurements of carboxyl MWNT/cement composites,” Cement and Concrete Composites, vol. 34, no. 6, pp. 794–800, 2012. View at Publisher · View at Google Scholar · View at Scopus
  104. A. G. Nasibulin, S. D. Shandakov, L. I. Nasibulina et al., “A novel cement-based hybrid material,” New Journal of Physics, vol. 11, Article ID 023013, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. P. R. Mudimela, L. I. Nasibulina, A. G. Nasibulin et al., “Synthesis of carbon nanotubes and nanofibers on silica and cement matrix materials,” Journal of Nanomaterials, vol. 2009, Article ID 526128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. Z. S. Metaxa, J.-W. T. Seo, M. S. Konsta-Gdoutos, M. C. Hersam, and S. P. Shah, “Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials,” Cement and Concrete Composites, vol. 34, no. 5, pp. 612–617, 2012. View at Publisher · View at Google Scholar · View at Scopus
  107. T. Nochaiya and A. Chaipanich, “Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials,” Applied Surface Science, vol. 257, no. 6, pp. 1941–1945, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. J. Makar, J. Margeson, and J. Luh, “Carbon nanotube/cement composites-early results and potential applications,” in Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, Vancouver, Canada, 2005.
  109. R. K. A. Al-Rub, A. I. Ashour, and B. M. Tyson, “On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites,” Construction and Building Materials, vol. 35, pp. 647–655, 2012. View at Publisher · View at Google Scholar
  110. Z. S. Metaxa, M. S. Konsta-Gdoutos, and S. P. Shah, “Carbon nanofiber cementitious composites: effect of debulking pro11-cedure on dispersion and reinforcing efficiency,” Cement and Concrete Composites, vol. 36, pp. 25–32, 2013.
  111. A. Yazdanbakhsh, Z. Grasley, B. Tyson, and R. A. Al-Rub, “Challenges and benefits of utilizing carbon nanofilaments in cementitious materials,” Journal of Nanomaterials, vol. 2012, Article ID 371927, 8 pages, 2012. View at Publisher · View at Google Scholar
  112. S. Musso, J.-M. Tulliani, G. Ferro, and A. Tagliaferro, “Influence of carbon nanotubes structure on the mechanical behavior of cement composites,” Composites Science and Technology, vol. 69, no. 11-12, pp. 1985–1990, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. G. Yakovlev, J. Kerienė, A. Gailius, and I. Girnienė, “Cement based foam concrete reinforced by carbon nanotubes,” Materials Science, vol. 12, no. 2, pp. 147–151, 2006.
  114. B. W. Langan, K. Weng, and M. A. Ward, “Effect of silica fume and fly ash on heat of hydration of Portland cement,” Cement and Concrete Research, vol. 32, no. 7, pp. 1045–1051, 2002. View at Publisher · View at Google Scholar · View at Scopus
  115. V. Saraswathy and H.-W. Song, “Evaluation of corrosion resistance of Portland pozzolana cement and fly ash blended cements in pre-cracked reinforced concrete slabs under accelerated testing conditions,” Materials Chemistry and Physics, vol. 104, no. 2-3, pp. 356–361, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. T. Yen, T.-H. Hsu, Y.-W. Liu, and S.-H. Chen, “Influence of class F fly ash on the abrasion-erosion resistance of high-strength concrete,” Construction and Building Materials, vol. 21, no. 2, pp. 458–463, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. J. Zuquan, S. Wei, Z. Yunsheng, J. Jinyang, and L. Jianzhong, “Interaction between sulfate and chloride solution attack of concretes with and without fly ash,” Cement and Concrete Research, vol. 37, no. 8, pp. 1223–1232, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. J. M. Miranda, A. Fernández-Jiménez, J. A. González, and A. Palomo, “Corrosion resistance in activated fly ash mortars,” Cement and Concrete Research, vol. 35, no. 6, pp. 1210–1217, 2005. View at Publisher · View at Google Scholar · View at Scopus
  119. H. Yazici, “The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze-thaw resistance of self-compacting concrete,” Construction and Building Materials, vol. 22, no. 4, pp. 456–462, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. A. Chaipanich, T. Nochaiya, W. Wongkeo, and P. Torkittikul, “Compressive strength and microstructure of carbon nanotubes-fly ash cement composites,” Materials Science and Engineering A, vol. 527, no. 4-5, pp. 1063–1067, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. M. S. Morsy, S. H. Alsayed, and M. Aqel, “Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar,” Construction and Building Materials, vol. 25, no. 1, pp. 145–149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Wild, J. M. Khatib, and A. Jones, “Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete,” Cement and Concrete Research, vol. 26, no. 10, pp. 1537–1544, 1996. View at Publisher · View at Google Scholar · View at Scopus
  123. T. R. Jones, G. V. Walters, and J. A. Kostuch, “Role of metakaolin in suppressing ASR in concrete containing reactive aggregate and exposed to saturated NaCl solution,” in Proceedings of the 9th International Conference Alkali-Aggregate Reaction Concrete, vol. 1, pp. 485–496, 1992.
  124. J. M. Khatib and S. Wild, “Sulphate resistance of metakaolin mortar,” Cement and Concrete Research, vol. 28, no. 1, pp. 83–92, 1998. View at Scopus
  125. A. Dubey and N. Banthia, “Influence of high-reactivity metakaolin and silica fume on the flexural toughness of high-performance steel fiber-reinforced concrete,” ACI Materials Journal, vol. 95, no. 3, pp. 284–292, 1998. View at Scopus
  126. A. M. Hunashyal, S. J. Lohitha, S. S. Quadri, and N. R. Banapurmath, “Experimental investigation of the effect of carbon nanotubes and carbon fibres on the behaviour of plain cement composite beams,” IES Journal Part A, vol. 4, no. 1, pp. 29–36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. O. Galao, E. Zornoza, F. J. Baeza, A. Bernabeu, and P. Garces, “Effect of carbon nanofiber addition in the mechanical properties and durability of cementitious materials,” Materiales de Construcción, vol. 62, no. 307, pp. 343–357, 2012.