About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 713583, 5 pages
http://dx.doi.org/10.1155/2013/713583
Research Article

Fabrication of Vertically Aligned CNT Composite for Membrane Applications Using Chemical Vapor Deposition through In Situ Polymerization

1School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), H-12, Islamabad 46000, Pakistan
2Centre for Energy Systems, USAID Centre for Advanced Studies, National University of Sciences & Technology (NUST), H-12, Islamabad 46000, Pakistan
3Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
4Advanced Technology Institute (ATI), University of Surrey, Guilford GU2 7XH, UK

Received 4 April 2013; Accepted 23 June 2013

Academic Editor: John Zhanhu Guo

Copyright © 2013 Munir Mohammad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Tsuda and Y. Sakka, “Simultaneous alignment and micropatterning of carbon nanotubes using modulated magnetic field,” Science and Technology of Advanced Materials, vol. 10, no. 1, Article ID 014603, 6 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Y. Jung, S. M. Jung, and J. S. Suh, “Horizontally aligned single-walled carbon nanotube field emitters fabricated on vertically aligned multi-walled carbon nanotube electrode arrays,” Carbon, vol. 46, no. 10, pp. 1345–1349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. E. J. García, A. J. Hart, B. L. Wardle, and A. H. Slocum, “Fabrication of composite microstructures by capillarity-driven wetting of aligned carbon nanotubes with polymers,” Nanotechnology, vol. 18, no. 16, Article ID 165602, 11 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Nakayama and S. Akita, “Field-emission device with carbon nanotubes for a flat panel display,” Synthetic Metals, vol. 117, no. 1–3, pp. 207–210, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. S. C. Youn, D.-H. Jung, Y. K. Ko, Y. W. Jin, J. M. Kim, and H.-T. Jung, “Vertical alignment of carbon nanotubes using the magneto-evaporation method,” Journal of the American Chemical Society, vol. 131, no. 2, pp. 742–748, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. P. V. Kamat, K. G. Thomas, S. Barazzouk, G. Girishkumar, K. Vinodgopal, and D. Meisel, “Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field,” Journal of the American Chemical Society, vol. 126, no. 34, pp. 10757–10762, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Zhang, F. Yan, C. S. Allen et al., “Growth of vertically-aligned carbon nanotube forests on conductive cobalt disilicide support,” Journal of Applied Physics, vol. 108, no. 2, Article ID 024311, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. I. López-Lorente, B. M. Simonet, and M. Valcárcel, “The potential of carbon nanotube membranes for analytical separations,” Analytical Chemistry, vol. 82, no. 13, pp. 5399–5407, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. J. Limb, C. B. Labelle, K. K. Gleason, D. J. Edell, and E. F. Gleason, “Growth of fluorocarbon polymer thin films with high CF2 fractions and low dangling bond concentrations by thermal chemical vapor deposition,” Applied Physics Letters, vol. 68, no. 20, pp. 2810–2813, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. K. B. Jirage, J. C. Hulteen, and C. R. Martin, “Nanotubule-based molecular-filtration membranes,” Science, vol. 278, no. 5338, pp. 655–658, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, “Chemistry of carbon nanotubes,” Chemical Reviews, vol. 106, no. 3, pp. 1105–1136, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Burghard and K. Balasubramanian, “Chemically functionalized carbon nanotubes,” Small, vol. 1, no. 2, pp. 180–192, 2005. View at Publisher · View at Google Scholar · View at Scopus