About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 714853, 6 pages
http://dx.doi.org/10.1155/2013/714853
Research Article

CuO and Co3O4 Nanoparticles: Synthesis, Characterizations, and Raman Spectroscopy

1Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
2Center of Optoelectronics and Photonics Paderborn (CeOPP), Warburger Straße 100, 33098 Paderborn, Germany

Received 3 April 2013; Revised 29 June 2013; Accepted 6 July 2013

Academic Editor: Yanbao Zhao

Copyright © 2013 M. Rashad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Henglein, “Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles,” Chemical Reviews, vol. 89, no. 8, pp. 1861–1873, 1989.
  2. A. Agfeldt and M. Gratzel, “Light-induced redox reactions in nanocrystalline systems,” Chemical Reviews, vol. 95, no. 1, pp. 49–68, 1995.
  3. J. Kampmeier, M. Rashad, U. Woggon et al., “Enhanced photoluminescence of colloidal nanocrystals embedded in epitaxially grown semiconductor microstructures,” Physical Review B, vol. 85, no. 15, Article ID 155405, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. A. S. Lanje, R. S. Ningthoujam, S. J. Sharma, R. B. Pode, and R. K. Vatsa, “Luminescence properties of Sn1-xFexO2 Nanoparticles,” International Journal of Nanotechnology, vol. 7, no. 9–12, pp. 979–988, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Lee, S. U.-S. Choi, S. Li, and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” Journal of Heat Transfer, vol. 121, no. 2, pp. 280–288, 1999. View at Scopus
  6. A. E. Rakhshni, “Preparation, characteristics and photovoltaic properties of cuprous oxide, a review,” Solid-State Electronics, vol. 29, p. 7, 1986.
  7. M. Salavati-Niasari and F. Davar, “Synthesis of copper and copper(I) oxide nanoparticles by thermal decomposition of a new precursor,” Materials Letters, vol. 63, no. 3-4, pp. 441–443, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M.-H. Yao, Y.-G. Tang, L. Zhang, H.-H. Yang, and J.-H. Yan, “Photocatalytic activity of CuO towards HER in catalyst from oxalic acid solution under simulated sunlight irradiation,” Transactions of Nonferrous Metals Society of China, vol. 20, no. 10, pp. 1944–1949, 2010.
  9. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.-M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature, vol. 407, no. 6803, pp. 496–499, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Liang, Y. Li, H. Wang et al., “Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction,” Nature Materials, vol. 10, no. 10, pp. 780–786, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. A. G. Saskia, “Microwave chemistry,” Chemical Society Reviews, vol. 26, no. 3, pp. 233–238, 1997.
  12. H. Wang, J. Xu, J. Zhu, and H. Chen, “Preparation of CuO nanoparticles by microwave irradiation,” Journal of Crystal Growth, vol. 244, no. 1, pp. 88–94, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Gouadec and P. Colomban, “Raman Spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties,” Progress in Crystal Growth and Characterization of Materials, vol. 53, no. 1, pp. 1–56, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science, vol. 275, no. 5303, pp. 1102–1106, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. J. F. Li, Y. F. Huang, Y. Ding et al., “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature, vol. 464, no. 7287, pp. 392–395, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. P. G. Gucciardi, S. Trusso, C. Vasi, S. Patanè, and M. Allegrini, “Optical near-field Raman imaging with subdiffraction resolution,” Applied Optics, vol. 42, no. 15, pp. 2724–2729, 2003. View at Scopus
  17. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chemical Physics Letters, vol. 318, no. 1–3, pp. 131–136, 2000.
  18. D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures,” Chemical Society Reviews, vol. 37, no. 5, pp. 1025–1041, 2008.
  19. M. H. Mahmoud, A. M. Elshahawy, S. A. Makhlouf, and H. H. Hamdeh, “Mössbauer and magnetization studies of nickel ferrite nanoparticles synthesized by the microwave-combustion method,” Journal of Magnetism and Magnetic Materials, vol. 343, pp. 21–26, 2013.
  20. JCPDS cards, No. 5-661.
  21. JCPDS cards, No. 78-1969.
  22. W. T. Yao, S. H. Yu, Y. Zhou et al., “Formation of uniform CuO nanorods by spontaneous aggregation: selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid-liquid phase arc discharge process,” The Journal of Physical Chemistry B, vol. 109, no. 29, pp. 14011–14016, 2005.
  23. H. Klug and L. Alexander, X-Ray Diffraction Procedures, vol. 125, Wiley, New York, NY, USA, 1962.
  24. J. G. Yang, Y. L. Zhou, T. Okamoto et al., “Preparation of oleic acid-capped copper nanoparticles,” Chemistry Letters, vol. 35, no. 10, pp. 1190–1191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. J. G. Yang, T. Okamoto, R. Ichino, T. Bessho, S. Satake, and M. Okido, “A simple way for preparing antioxidation nano-copper powders,” Chemistry Letters, vol. 35, no. 6, pp. 648–649, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Zhu, C. Zhang, and Y. Yin, “Novel synthesis of copper nanoparticles: influence of the synthesis conditions on the particle size,” Nanotechnology, vol. 16, no. 12, pp. 3079–3083, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Richter, Z. P. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Communications, vol. 39, no. 5, pp. 625–629, 1981. View at Scopus
  28. W. Reichardt, F. Gompf, M. Aïn, and B. M. Wanklyn, “Lattice dynamics of cupric oxide,” Zeitschrift für Physik B, vol. 81, no. 1, pp. 19–24, 1990. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Chrzanowske and J. C. Irwin, “Raman scattering from cupric oxide,” Solid State Communications, vol. 70, no. 1, pp. 11–14, 1989.
  30. H. F. Goldstein, D. Kim, P. Y. Yu, L. C. Bourne, J.-P. Chaminade, and L. Nganga, “Raman study of CuO single crystals,” Physical Review B, vol. 41, no. 10, pp. 7192–7194, 1990. View at Publisher · View at Google Scholar · View at Scopus
  31. J. F. Xu, W. Ji, Z. X. Shen et al., “Raman spectra of CuO nanocrystals,” Journal of Raman Spectroscopy, vol. 30, no. 5, pp. 413–415, 1999. View at Scopus
  32. C. Woong Na, H. Woo, H. Kim, U. Jeong, J. Hung, and J. Lee, “Controlled transformation of ZnO nanobelts into CoO/Co3O4 nanowires,” The Royal Society of Chemistry, 2012.