About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 717459, 8 pages
http://dx.doi.org/10.1155/2013/717459
Research Article

Effect of Acid- and Ultraviolet/Ozonolysis-Treated MWCNTs on the Electrical and Mechanical Properties of Epoxy Nanocomposites as Bipolar Plate Applications

1Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
2Department of Mechanical and Materials Engineering, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
3Department of Mechanical Engineering, Universitas Bung Hatta, 25143 Padang, West Sumatera, Indonesia

Received 11 October 2012; Revised 19 December 2012; Accepted 16 January 2013

Academic Editor: Xu Hou

Copyright © 2013 Nishata Royan Rajendran Royan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Tawfik, Y. Hung, and D. Mahajan, “Metal bipolar plates for PEM fuel cell—a review,” Journal of Power Sources, vol. 163, no. 2, pp. 755–767, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Lafront, E. Ghali, and A. T. Morales, “Corrosion behavior of two bipolar plate materials in simulated PEMFC environment by electrochemical noise technique,” Electrochimica Acta, vol. 52, no. 15, pp. 5076–5085, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Huang, D. G. Baird, and J. E. McGrath, “Development of fuel cell bipolar plates from graphite filled wet-lay thermoplastic composite materials,” Journal of Power Sources, vol. 150, no. 1-2, pp. 110–119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Li and I. Sabir, “Review of bipolar plates in PEM fuel cells: flow-field designs,” International Journal of Hydrogen Energy, vol. 30, no. 4, pp. 359–371, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Cunningham and D. G. Baird, “The development of economical bipolarplates for fuel cells,” Journal of Materials Chemistry, vol. 16, pp. 4358–4388, 2006.
  6. L. Du and S. C. Jana, “Highly conductive epoxy/graphite composites for bipolar plates in proton exchange membrane fuel cells,” Journal of Power Sources, vol. 172, no. 2, pp. 734–741, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Y. Yen, S. H. Liao, Y. F. Lin, C. H. Hung, Y. Y. Lin, and C. C. M. Ma, “Preparation and properties of high performance nanocomposite bipolar plate for fuel cell,” Journal of Power Sources, vol. 162, no. 1, pp. 309–315, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Dweiri and J. Sahari, “Microstructural image analysis and structure-electrical conductivity relationship of single- and multiple-filler conductive composites,” Composites Science and Technology, vol. 68, no. 7-8, pp. 1679–1687, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Dweiri and J. Sahari, “Electrical properties of carbon-based polypropylene composites for bipolar plates in polymer electrolyte membrane fuel cell (PEMFC),” Journal of Power Sources, vol. 171, no. 2, pp. 424–432, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. K. Kuo and C. K. Chen, “A novel Nylon-6-S316L fiber compound material for injection molded PEM fuel cell bipolar plates,” Journal of Power Sources, vol. 162, no. 1, pp. 207–214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Scholta, B. Rohland, V. Trapp, and U. Focken, “Investigations on novel low-cost graphite composite bipolar plates,” Journal of Power Sources, vol. 84, no. 2, pp. 231–234, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Suhermana, A. B. Sulonga, and J. Saharia, “Effect of filler loading concentration, curing temperature and molding pressure on the electrical conductivity of CNTS/graphite/epoxy nanocomposites at high loading of conductive fillers,” International Journal of Mechanical and Materials Engineering, vol. 5, no. 1, pp. 74–79, 2010. View at Scopus
  13. H. Suherman, A. B. Sulong, and J. Sahari, “Effect of the compression molding parameters on the in-plane and through-plane conductivity of carbon nanotubes/graphite/epoxy nanocomposites as bipolar plate material for a polymer electrolyte membrane fuel cell,” Ceramics International, vol. 39, no. 2, pp. 1227–1284, 2013.
  14. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991. View at Scopus
  15. Y. Ando, X. Zhao, H. Shimoyama, G. Sakai, and K. Kaneto, “Physical properties of multiwalled carbon nanotubes,” International Journal of Inorganic Materials, vol. 1, no. 1, pp. 77–82, 1999. View at Scopus
  16. M. Zhang, L. Su, and L. Mao, “Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid,” Carbon, vol. 44, no. 2, pp. 276–283, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. A. A. Hirsh, “Functionalization of single-walled carbon nanotubes,” Angewandte Chemie, vol. 41, no. 11, pp. 1853–1859, 2002.
  18. Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y. C. Chung, and H. G. Yoon, “Electrical conductivity of chemically modified multiwalled carbonnanotube/epoxy composites,” Carbon, vol. 43, no. 1, pp. 23–30, 2005.
  19. A. B. Sulong, N. Muhamad, J. Sahari, R. Ramli, B. M. Deros, and J. Park, “Electrical conductivity behaviour of chemical functionalized MWCNTs epoxy nanocomposites,” European Journal of Scientific Research, vol. 29, no. 1, pp. 13–21, 2009. View at Scopus
  20. J. Park and A. B. B. Sulong, “Effect of chemically surface modified MWNTs on the mechanical and electrical properties of epoxy nanocomposites,” Studies in Surface Science and Catalysis, vol. 165, pp. 405–408, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. B. Sulong, C. H. Azhari, R. Zulkifli, M. R. Othman, and J. Park, “A comparison of defects produced on oxidation of carbon nanotubes by acid and UV ozone treatment,” European Journal of Scientific Research, vol. 33, no. 2, pp. 295–304, 2009. View at Scopus
  22. S. D. Kim, J. W. Kim, J. S. Im, Y. H. Kim, and Y. S. Lee, “A comparative study on properties of multi-walled carbon nanotubes (MWCNTs) modified with acids and oxyfluorination,” Journal of Fluorine Chemistry, vol. 128, no. 1, pp. 60–64, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Zhang, Z. Shi, Z. Gu, and S. Iijima, “Structure modification of single-wall carbon nanotubes,” Carbon, vol. 38, no. 15, pp. 2055–2059, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Wang, J. Wu, and F. Wei, “A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio,” Carbon, vol. 41, no. 15, pp. 2939–2948, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. C. A. Martin, J. K. W. Sandler, A. H. Windle et al., “Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites,” Polymer, vol. 46, no. 3, pp. 877–886, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Bubke, H. Gnewuch, M. Hempstead, J. Hammer, and M. L. H. Green, “Optical anisotropy of dispersed carbon nanotubes induced by an electric field,” Applied Physics Letters, vol. 71, no. 14, pp. 1906–1908, 1997. View at Scopus
  27. E. Najafi, J. Y. Kim, S. H. Han, and K. Shin, “UV-ozone treatment of multi-walled carbon nanotubes for enhanced organic solvent dispersion,” Colloids and Surfaces A, vol. 284-285, pp. 373–378, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Cai, J. L. Bahr, Y. Yao, and J. M. Tour, “Ozonation of single-walled carbon nanotubes and their assemblies on rigid self-assembled monolayers,” Chemistry of Materials, vol. 14, no. 10, pp. 4235–4241, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. M. L. Sham and J. K. Kim, “Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments,” Carbon, vol. 44, no. 4, pp. 768–777, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Grujicic, G. Cao, A. M. Rao, T. M. Tritt, and S. Nayak, “UV-light enhanced oxidation of carbon nanotubes,” Applied Surface Science, vol. 214, no. 1–4, pp. 289–303, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf.
  32. P. C. Ma, M. Y. Liu, H. Zhang et al., “Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black,” ACS Applied Materials & Interface, vol. 1, pp. 1090–1096, 2009.
  33. S. Zdenko, T. Dimitrios, S. P. Kon, and G. Contas, “Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties,” Progress in Polymer Science, vol. 35, no. 3, pp. 357–401, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Suherman, A. B. Sulong, and J. Sahari, “Eletrical conductivity of the multi-walled carbon nanotubes/epoxy nanocomposites,” World Journal of Engineering, vol. 6, p. 987, 2009.
  35. P. Pisitsak, R. Magaraphan, and S. C. Jana, “Electrically conductive compounds of polycarbonate, liquid crstalline polymer, and mulltiwalled carbon nanotubes,” Journal of Nanomaterials, vol. 2012, Article ID 642080, 10 pages, 2012. View at Publisher · View at Google Scholar
  36. M. C. Hsiao, S. H. Liao, M. Y. Yen et al., “Electrical and thermal conductivities of novel metal mesh hybrid polymer composite bipolar plates for proton exchange membrane fuel cells,” Journal of Power Sources, vol. 195, no. 2, pp. 509–515, 2010. View at Publisher · View at Google Scholar · View at Scopus