About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 729306, 8 pages
http://dx.doi.org/10.1155/2013/729306
Research Article

In Vitro Evaluation of Cytotoxicity of Colloidal Amorphous Silica Nanoparticles Designed for Drug Delivery on Human Cell Lines

1NanoBiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Georgetown, Penang, Malaysia
2School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
3School of Health Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia

Received 13 July 2013; Revised 13 August 2013; Accepted 15 August 2013

Academic Editor: Haifeng Chen

Copyright © 2013 Venugopal Balakrishnan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Mishra, B. B. Patel, and S. Tiwari, “Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 6, no. 1, pp. 9–24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. N. A. Ochekpe, P. O. Olorunfemi, and N. C. Ngwuluka, “Nanotechnology and drug delivery part 2: nanostructures for drug delivery,” Tropical Journal of Pharmaceutical Research, vol. 8, no. 3, pp. 275–287, 2009. View at Scopus
  3. D. J. Bharali, I. Klejbor, E. K. Stachowiak et al., “Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 32, pp. 11539–11544, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Lu, M. Liong, J. I. Zink, and F. Tamanoi, “Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs,” Small, vol. 3, no. 8, pp. 1341–1346, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Y. Ohulchanskyy, I. Roy, L. N. Goswami et al., “Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer,” Nano Letters, vol. 7, no. 9, pp. 2835–2842, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. I. I. Slowing, J. L. Vivero-Escoto, C. W. Wu, and V. S. Y. Lin, “Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers,” Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1278–1288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Rivera-Gil, D. Jimenez de Aberasturi, V. Wulf et al., “The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity,” Accounts of Chemical Research, vol. 46, no. 3, pp. 743–749, 2012. View at Publisher · View at Google Scholar
  8. J. M. Hillegass, A. Shukla, S. A. Lathrop, M. B. MacPherson, N. K. Fukagawa, and B. T. Mossman, “Assessing nanotoxicity in cells in vitro,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol. 2, no. 3, pp. 219–231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. R. K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry, John Wiley & Sons, New York, NY, USA, 1979.
  10. R. Viitala, S. Areva, M. Jokinen, and M. Koskinen, “About interactions between sol-gel derived silica, titania and living organisms,” in Sol-Gel Methods for Materials Processing, P. Innocenzi, Y. Zub, and V. Kessler, Eds., vol. 15, pp. 251–268, 2008.
  11. J. F. Popplewell, S. J. King, J. P. Day et al., “Kinetics of uptake and elimination of silicic acid by a human subject: a novel application of 32Si and accelerator mass spectrometry,” Journal of Inorganic Biochemistry, vol. 69, no. 3, pp. 177–180, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Lai, P. Ducheyne, and J. Garino, “Removal pathway of silicon released from bioactive glass granules in vivo,” Bioceramics, vol. 11, 1998.
  13. F. J. Arriagada and K. Osseo-Asare, “Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration,” Journal of Colloid and Interface Science, vol. 211, no. 2, pp. 210–220, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Chen, H. Qu, A. Agrawal, S. Guo, and P. Ducheyne, “Controlled release of small molecules from silica xerogel with limited nanoporosity,” Journal of Materials Science: Materials in Medicine, vol. 24, no. 1, pp. 137–146, 2013. View at Publisher · View at Google Scholar
  15. A. Anedda, C. M. Carbonaro, F. Clemente, R. Corpino, and P. C. Ricci, “Low temperature investigation of the blue emission in mesoporous silica,” Materials Science and Engineering C, vol. 25, no. 5–8, pp. 631–634, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Jafarzadeh, I. A. Rahman, and C. S. Sipaut, “Optical properties of amorphous organo-modified silica nanoparticles produced via co-condensation method,” Ceramics International, vol. 36, no. 1, pp. 333–338, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. L. N. Skuja, A. N. Streletsky, and A. B. Pakovich, “A new intrinsic defect in amorphous SiO2: twofold coordinated silicon,” Solid State Communications, vol. 50, no. 12, pp. 1069–1072, 1984. View at Scopus
  18. R. Tohmon, H. Mizuno, Y. Ohki, K. Sasagane, K. Nagasawa, and Y. Hama, “Correlation of the 5.0- and 7.6-eV absorption bands in SiO2 with oxygen vacancy,” Physical Review B, vol. 39, no. 2, pp. 1337–1345, 1989. View at Publisher · View at Google Scholar · View at Scopus
  19. I. A. Rahman, P. Vejayakumaran, C. S. Sipaut, J. Ismail, and C. K. Chee, “Size-dependent physicochemical and optical properties of silica nanoparticles,” Materials Chemistry and Physics, vol. 114, no. 1, pp. 328–332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Lin, Y. W. Huang, X. D. Zhou, and Y. Ma, “In vitro toxicity of silica nanoparticles in human lung cancer cells,” Toxicology and Applied Pharmacology, vol. 217, no. 3, pp. 252–259, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Y. Ye, J. W. Liu, M. C. Chen, L. J. Sun, and M. B. Lan, “In vitro toxicity of silica nanoparticles in myocardial cells,” Environmental Toxicology and Pharmacology, vol. 29, no. 2, pp. 131–137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Napierska, L. C. J. Thomassen, V. Rabolli et al., “Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells,” Small, vol. 5, no. 7, pp. 846–853, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science, vol. 311, no. 5761, pp. 622–627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. H. M. Kipen and D. L. Laskin, “Smaller is not always better: nanotechnology yields nanotoxicology,” The American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 289, no. 5, pp. L696–L697, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Oberdörster, E. Oberdörster, and J. Oberdörster, “Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles,” Environmental Health Perspectives, vol. 113, no. 7, pp. 823–839, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Lu, J. Qian, H. Zhou et al., “In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells,” International Journal of Nanomedicine, vol. 6, pp. 1889–1901, 2011. View at Scopus
  27. T. Cedervall, I. Lynch, M. Foy et al., “Detailed identification of plasma proteins adsorbed on copolymer nanoparticles,” Angewandte Chemie—International Edition, vol. 46, no. 30, pp. 5754–5756, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. E. G. Barrett, C. Johnston, G. Oberdörster, and J. N. Finkelstein, “Silica binds serum proteins resulting in a shift of the dose-response for silica-induced chemokine expression in an alveolar type II cell line,” Toxicology and Applied Pharmacology, vol. 161, no. 2, pp. 111–122, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Tenzer, D. Docter, S. Rosfa et al., “Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis,” ACS Nano, vol. 5, no. 9, pp. 7155–7167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Yu, A. Malugin, and H. Ghandehari, “Impact of silica nanoparticle design on cellular toxicity and hemolytic activity,” ACS Nano, vol. 5, no. 7, pp. 5717–5728, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Kroll, C. Dierker, C. Rommel et al., “Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays,” Particle and Fibre Toxicology, vol. 8, article 9, 2011. View at Publisher · View at Google Scholar · View at Scopus