About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 734686, 7 pages
http://dx.doi.org/10.1155/2013/734686
Research Article

Carbon Micronymphaea: Graphene on Vertically Aligned Carbon Nanotubes

Institute of Energy Technology, ETH Zürich, Sonneggstraße 3, 8092 Zürich, Switzerland

Received 5 March 2013; Accepted 24 July 2013

Academic Editor: Nadya Mason

Copyright © 2013 Jong Won Choi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. Purewal, B. H. Hong, A. Ravi, B. Chandra, J. Hone, and P. Kim, “Scaling of resistance and electron mean free path of single-walled carbon nanotubes,” Physical Review Letters, vol. 98, no. 18, Article ID 186808, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. W.-K. Tse, E. H. Hwang, and S. Das Sarma, “Ballistic hot electron transport in graphene,” Applied Physics Letters, vol. 93, no. 2, Article ID 023128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. D. Li, Z. Yu, C. Rutherglen, and P. J. Burke, “Electrical properties of 0.4 cm long single-walled carbon nanotubes,” Nano Letters, vol. 4, no. 10, pp. 2003–2007, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Giannazzo, S. Sonde, R. L. Nigro, E. Rimini, and V. Raineri, “Mapping the density of scattering centers limiting the electron mean free path in graphene,” Nano Letters, vol. 11, no. 11, pp. 4612–4618, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. R. F. Zhang, Q. Wen, W. Z. Qian, D. S. Su, Q. Zhang, and F. Wei, “Superstrong ultralong carbon nanotubes for mechanical energy storage,” Advanced Materials, vol. 23, no. 30, pp. 3387–3391, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, no. 5887, pp. 385–388, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, “Thermal conductance of an individual single-wall carbon nanotube above room temperature,” Nano Letters, vol. 6, no. 1, pp. 96–100, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. A. Balandin, S. Ghosh, W. Bao et al., “Superior thermal conductivity of single-layer graphene,” Nano Letters, vol. 8, no. 3, pp. 902–907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Paulson, A. Helser, M. Buongiorno Nardelli et al., “Tunable resistance of a carbon nanotube-graphite interface,” Science, vol. 290, no. 5497, pp. 1742–1744, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Q. Zhu, Y. M. Zhang, L. Yue et al., “Graphite-carbon nanotube composite electrodes for all vanadium redox flow battery,” Journal of Power Sources, vol. 184, no. 2, pp. 637–640, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Tang and J. H. Gou, “Synergistic effect on electrical conductivity of few-layer graphene/multi-walled carbon nanotube paper,” Materials Letters, vol. 64, no. 22, pp. 2513–2516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. U. Khan, I. O'Connor, Y. K. Gun'Ko, and J. N. Coleman, “The preparation of hybrid films of carbon nanotubes and nano-graphite/graphene with excellent mechanical and electrical properties,” Carbon, vol. 48, no. 10, pp. 2825–2830, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. D. S. Yu and L. M. Dai, “Self-assembled graphene/carbon nanotube hybrid films for supercapacitors,” Journal of Physical Chemistry Letters, vol. 1, no. 2, pp. 467–470, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. B. A. Zhang, Q. B. Zheng, Z. D. Huang, S. W. Oh, and J. K. Kim, “SnO2-graphene-carbon nanotube mixture for anode material with improved rate capacities,” Carbon, vol. 49, no. 13, pp. 4524–4534, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Y. Li, Z. Li, H. W. Zhu et al., “Graphene nano-“patches” on a carbon nanotube network for highly transparent/conductive thin film applications,” Journal of Physical Chemistry C, vol. 114, no. 33, pp. 14008–14012, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Kondo, S. Sato, and Y. Awano, “Self-organization of novel carbon composite structure: graphene multi-layers combined perpendicularly with aligned carbon nanotubes,” Applied Physics Express, vol. 1, no. 7, Article ID 0740033, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Jousseaume, J. Cuzzocrea, N. Bernier, and V. T. Renard, “Few graphene layers/carbon nanotube composites grown at complementary-metal-oxide-semiconductor compatible temperature,” Applied Physics Letters, vol. 98, no. 12, Article ID 123103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors,” Applied Physics Letters, vol. 73, no. 17, pp. 2447–2449, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. C. H. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, “Thermal conductance and thermopower of an individual single-wall carbon nanotube,” Nano Letters, vol. 5, no. 9, pp. 1842–1846, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Takagi, Y. Homma, H. Hibino, S. Suzuki, and Y. Kobayashi, “Single-walled carbon nanotube growth from highly activated metal nanoparticles,” Nano Letters, vol. 6, no. 12, pp. 2642–2645, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. Q. K. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators,” Applied Physics Letters, vol. 93, no. 11, Article ID 113103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. K. S. Kim, Y. Zhao, H. Jang et al., “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature, vol. 457, no. 7230, pp. 706–710, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Reina, X. T. Jia, H. John et al., “Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Letters, vol. 9, pp. 3087–3087, 2009.
  24. M. Cantoro, S. Hofmann, S. Pisana et al., “Effects of pre-treatment and plasma enhancement on chemical vapor deposition of carbon nanotubes from ultra-thin catalyst films,” Diamond and Related Materials, vol. 15, no. 4-8, pp. 1029–1035, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. R. R. Mitchell, B. M. Gallant, C. V. Thompson, and Y. Shao-Horn, “All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries,” Energy and Environmental Science, vol. 4, no. 8, pp. 2952–2958, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Bikshapathi, A. Sharma, A. Sharma, and N. Verma, “Preparation of carbon molecular sieves from carbon micro and nanofibers for sequestration of CO2,” Chemical Engineering Research and Design, vol. 89, no. 9, pp. 1737–1746, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. C. T. Wirth, S. Hofmann, and J. Robertson, “State of the catalyst during carbon nanotube growth,” Diamond and Related Materials, vol. 18, no. 5-8, pp. 940–945, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Graf, F. Molitor, K. Ensslin et al., “Spatially resolved raman spectroscopy of single- and few-layer graphene,” Nano Letters, vol. 7, no. 2, pp. 238–242, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Das, B. Chakraborty, and A. K. Sood, “Raman spectroscopy of graphene on different substrates and influence of defects,” Bulletin of Materials Science, vol. 31, no. 3, pp. 579–584, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, “Chemical vapor deposition of thin graphite films of nanometer thickness,” Carbon, vol. 45, no. 10, pp. 2017–2021, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. H. J. Park, J. Meyer, S. Roth, and V. Skákalová, “Growth and properties of few-layer graphene prepared by chemical vapor deposition,” Carbon, vol. 48, no. 4, pp. 1088–1094, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. P. Chen, W. C. Ren, B. L. Liu et al., “Bulk growth of mono- to few-layer graphene on nickel particles by chemical vapor deposition from methane,” Carbon, vol. 48, no. 12, pp. 3543–3550, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. A. C. Ferrari, J. C. Meyer, V. Scardaci et al., “Raman spectrum of graphene and graphene layers,” Physical Review Letters, vol. 97, no. 18, Article ID 187401, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects,” Solid State Communications, vol. 143, no. 1-2, pp. 47–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. M. Caridad, F. Rossella, V. Bellani, M. Maicas, M. Patrini, and E. Díez, “Effects of particle contamination and substrate interaction on the Raman response of unintentionally doped graphene,” Journal of Applied Physics, vol. 108, no. 8, Article ID 084321, 2010. View at Publisher · View at Google Scholar · View at Scopus