About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 736275, 5 pages
http://dx.doi.org/10.1155/2013/736275
Research Article

Fixed Bed Adsorption Study on Phosphate Removal Using Nanosized FeOOH-Modified Anion Resin

1School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
2Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, No. 393 Binshuixi Road, Xiqing District, Tianjin 300387, China

Received 2 May 2013; Accepted 3 June 2013

Academic Editor: Xinqing Chen

Copyright © 2013 Nan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Shintaro and F. Keisuke, “Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite,” Journal of Colloid and Interface Science, vol. 384, no. 1, pp. 128–136, 2012.
  2. Y. Wu, T. Li, and L. Yang, “Mechanisms of removing pollutants from aqueous solutions by microorganisms and their aggregates: a review,” Bioresource Technology, vol. 107, pp. 10–18, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. M. S. Onyango, D. Kuchar, M. Kubota, and H. Matsuda, “Adsorptive removal of phosphate ions from aqueous solution using synthetic zeolite,” Industrial and Engineering Chemistry Research, vol. 46, no. 3, pp. 894–900, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Ma, Y. Z. Peng, S. Y. Wang, L. Wang, Y. Liu, and N. P. Ma, “Denitrifying phosphorus removal in a step-feed CAST with alternating anoxic-oxic operational strategy,” Journal of Environmental Sciences, vol. 21, no. 9, pp. 1169–1174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Chen, P. Zhang, G. Zeng, J. Deng, Y. Zhou, and H. Lu, “Sewage sludge conditioning with coal fly ash modified by sulfuric acid,” Chemical Engineering Journal, vol. 158, no. 3, pp. 616–622, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Li and Y. Chen, “Research on polyhydroxyalkanoates and glycogen transformations: key aspects to biologic nitrogen and phosphorus removal in low dissolved oxygen systems,” Frontiers of Environmental Science and Engineering in China, vol. 5, no. 2, pp. 283–290, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Li, C. Liu, Z. Luan et al., “Phosphate removal from aqueous solutions using raw and activated red mud and fly ash,” Journal of Hazardous Materials, vol. 137, no. 1, pp. 374–383, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Xu, D. Cheng, B. Gao, Z. Yin, Q. Yue, and X. Zhao, “Preparation and characterization of β-FeOOH-coated sand and its adsorption of Cr(VI) from aqueous solutions,” Frontiers of Environmental Science and Engineering in China, vol. 6, no. 4, pp. 455–462, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Dixit and J. G. Hering, “Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility,” Environmental Science and Technology, vol. 37, no. 18, pp. 4182–4189, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. A. C. Scheinost, S. Abend, K. I. Pandya, and D. L. Sparks, “Kinetic controls on Cu and Pb sorption by ferrihydrite,” Environmental Science and Technology, vol. 35, no. 6, pp. 1090–1096, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Zeng, X. Li, and J. Liu, “Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings,” Water Research, vol. 38, no. 5, pp. 1318–1326, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Pan, J. Wu, B. Pan et al., “Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents,” Water Research, vol. 43, no. 17, pp. 4421–4429, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. L. Warner, W. Chouyyok, K. E. Mackie et al., “Manganese doping of magnetic iron oxide nanoparticles: tailoring surface reactivity for a regenerable heavy metal sorbent,” Langmuir, vol. 28, no. 8, pp. 3931–3937, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. B. D. Martin, S. A. Parsons, and B. Jefferson, “Removal and recovery of phosphate from municipal wastewaters using a polymeric anion exchanger bound with hydrated ferric oxide nanoparticles,” Water Science and Technology, vol. 60, no. 10, pp. 2637–2645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Cumbal and A. K. SenGupta, “Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: role of Donnan membrane effect,” Environmental Science and Technology, vol. 39, no. 17, pp. 6508–6515, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. D. Gupta, P. Loganathan, and S. Vigneswaran, “Adsorptive removal of nitrate and phosphate from water by a purolite ion exchange resin and hydrous ferric oxide columns in series,” Separation Science and Technology, vol. 47, no. 12, pp. 1785–1792, 2012.
  17. J. Ren, N. Li, and L. Zhao, “Adsorptive removal of Cr(VI) from water by anion exchanger based nanosized ferric oxyhydroxide hybrid adsorbent,” Chemical and Biochemical Engineering Quarterly, vol. 26, no. 2, pp. 111–118, 2012.
  18. K. H. Chu, “Improved fixed bed models for metal biosorption,” Chemical Engineering Journal, vol. 97, no. 2-3, pp. 233–239, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. American Public Health Association, American Water Works Association, Water Pollution Control Federation, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC, USA, 19th edition, 1995.
  20. G. McKay and M. J. Bino, “Fixed bed adsorption for the removal of pollutants from water,” Environmental Pollution, vol. 66, no. 1, pp. 33–53, 1990. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Han, Y. Wang, X. Zhao et al., “Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column: experiments and prediction of breakthrough curves,” Desalination, vol. 245, no. 1–3, pp. 284–297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. H. Yoon and J. H. Nelson, “Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life,” American Industrial Hygiene Association Journal, vol. 45, no. 8, pp. 509–516, 1984. View at Scopus
  23. H. Zeng, B. Fisher, and D. E. Giammar, “Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent,” Environmental Science and Technology, vol. 42, no. 1, pp. 147–152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Lefèvre, “In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides,” Advances in Colloid and Interface Science, vol. 107, no. 2-3, pp. 109–123, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M. R. Awual and A. Jyo, “Assessing of phosphorus removal by polymeric anion exchangers,” Desalination, vol. 281, no. 1, pp. 111–117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. H. W. Li, Z. P. Ye, Y. Lin, and F. Y. Wang, “Phosphorus recovery as struvite from eutropic waters by XDA-7 resin,” Water Science and Technology, vol. 65, no. 12, pp. 2091–2097, 2012.
  27. L. Ding, C. Wu, H. Deng, and X. Zhang, “Adsorptive characteristics of phosphate from aqueous solutions by MIEX resin,” Journal of Colloid and Interface Science, vol. 376, no. 1, pp. 224–232, 2012. View at Publisher · View at Google Scholar · View at Scopus