About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 742075, 7 pages
http://dx.doi.org/10.1155/2013/742075
Research Article

Hydrogen Storage in Iron/Carbon Nanopowder Composite Materials: Effect of Varying Spiked Iron Content on Hydrogen Adsorption

1National Nano Device Laboratories, Hsinchu, Taiwan
2Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
3Department of Mechanical Engineering, National Central University, Taoyuan County, Taiwan

Received 20 December 2012; Revised 6 February 2013; Accepted 6 February 2013

Academic Editor: Hongmei Luo

Copyright © 2013 Chun-Lin Chu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. J. Park, B. J. Kim, Y. S. Lee, and M. J. Cho, “Influence of copper electroplating on high pressure hydrogen-storage behaviors of activated carbon fibers,” International Journal of Hydrogen Energy, vol. 33, no. 6, pp. 1706–1710, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. M. A. de la Casa-Lillo, F. Lamari-Darkrim, D. Cazorla-Amorós, and A. Linares-Solano, “Hydrogen storage in activated carbons and activated carbon fibers,” Journal of Physical Chemistry B, vol. 106, no. 42, pp. 10930–10934, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Rzepka, P. Lamp, and M. A. de la Casa-Lillo, “Physisorption of hydrogen on microporous carbon and carbon nanotubes,” Journal of Physical Chemistry B, vol. 102, no. 52, pp. 10894–10898, 1998. View at Scopus
  4. P. Larsson, C. M. Araújo, J. A. Larsson, P. Jena, and R. Ahuja, “Role of catalysts in dehydrogenation of MgH2 nanoclusters,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 24, pp. 8227–8231, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. P. C. M. M. Magusin, W. P. Kalisvaart, P. H. L. Notten, and R. A. van Santen, “Hydrogen sites and dynamics in light-weight hydrogen-storage material magnesium-scandium hydride investigated with 1H and 2H NMR,” Chemical Physics Letters, vol. 456, no. 1-3, pp. 55–58, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Kabbour, T. F. Baumann, J. H. Satcher, A. Saulnier, and C. C. Ahn, “Toward new candidates for hydrogen storage: high-surface-area carbon aerogels,” Chemistry of Materials, vol. 18, no. 26, pp. 6085–6087, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Wu, Y. Gao, and X. C. Zeng, “Hydrogen storage in pillared Li-dispersed boron carbide nanotubes,” Journal of Physical Chemistry C, vol. 112, no. 22, pp. 8458–8463, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Kocabas, T. Kopac, G. Dogu, and T. Dogu, “Effect of thermal treatments and palladium loading on hydrogen sorption characteristics of single-walled carbon nanotubes,” International Journal of Hydrogen Energy, vol. 33, no. 6, pp. 1693–1699, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Zieliński, R. Wojcieszak, S. Monteverdi, M. Mercy, and M. M. Bettahar, “Hydrogen storage in nickel catalysts supported on activated carbon,” International Journal of Hydrogen Energy, vol. 32, no. 8, pp. 1024–1032, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Zacharia, K. Y. Kim, A. K. M. F. Kibriab, and K. S. Nahm, “Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles,” Chemical Physics Letters, vol. 412, no. 4-6, pp. 369–375, 2005. View at Publisher · View at Google Scholar
  11. H. S. Kim, H. Lee, K. S. Han et al., “Hydrogen storage in Ni nanoparticle-dispersed multiwalled carbon nanotubes,” Journal of Physical Chemistry B, vol. 109, no. 18, pp. 8983–8986, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Wiley-VCH, 2nd edition, 2003.
  13. F. . Rouquerol, J. Rouquerol, and K. S. W. Sing, Adsorption By Powders and Porous Solids: Principles, Methodology and Applications, Academic Press, 1999.
  14. D. F. Evans and H. Wennerstrom, The Colloidal Domain: Where Physics, Chemistry, Biology and Technology Meet, Wiley-VCH, 2nd edition, 1999.
  15. Y. Li and R. T. Yang, “Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover,” Journal of the American Chemical Society, vol. 128, no. 25, pp. 8136–8137, 2006. View at Publisher · View at Google Scholar · View at Scopus