About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 747963, 10 pages
http://dx.doi.org/10.1155/2013/747963
Research Article

Preparation, Characterization, Thermal, and Flame-Retardant Properties of Green Silicon-Containing Epoxy/Functionalized Graphene Nanosheets Composites

1Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
2Plastic Industry Development Center, Taichung 407, Taiwan
3Department of Computer Application Engineering, Far East University, Tainan 744, Taiwan
4Department of Material Science and Engineering, Far East University, Tainan 744, Taiwan
5Green Flame Retardant Material Research Laboratory, Department of Safety, Health and Environmental Engineering, Hung-Kuang University, Taichung 433, Taiwan

Received 4 January 2013; Revised 15 March 2013; Accepted 15 March 2013

Academic Editor: Christian Brosseau

Copyright © 2013 Ming-Yuan Shen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Barontini and V. Cozzani, “Formation of hydrogen bromide and organobrominated compounds in the thermal degradation of electronic boards,” Journal of Analytical and Applied Pyrolysis, vol. 77, no. 1, pp. 41–55, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. A. K. Sen, B. Mukherjee, A. S. Bhattacharya, L. K. Sanghi, P. P. De, and A. K. Bhowmick, “Preparation and characterization of low-halogen and nonhalogen fire-resistant low-smoke (FRLS) cable sheathing compound from blends of functionalized polyolefins and PVC,” Journal of Applied Polymer Science, vol. 43, no. 9, pp. 1673–1684, 1991. View at Publisher · View at Google Scholar · View at Scopus
  3. M. J. Chen, Z. B. Shao, X. L. Wang, L. Chen, and Y. Z. Wang, “Halogen-free flame-retardant flexible polyurethane foam with a novel nitrogen-phosphorus flame retardant,” Industrial and Engineering Chemistry Research, vol. 51, no. 29, pp. 9769–9776, 2012.
  4. L. Du, G. Xu, Y. Zhang, J. Qian, and J. Chen, “Synthesis and properties of a novel intumescent flame retardant (IFR) and its application in halogen-free flame retardant ethylene propylene diene terpolymer (EPDM),” Polymer-Plastics Technology and Engineering, vol. 50, no. 4, pp. 372–378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. K. C. Tsai, C. F. Kuan, C. H. Chen et al., “Study on thermal degradation and flame retardant property of halogen-free polypropylene composites using XPS and cone calorimeter,” Journal of Applied Polymer Science, vol. 127, no. 2, pp. 1084–1091, 2013.
  6. T. M. D. Nguyen, S. Chang, B. Condon, M. Uchimiya, and C. Fortier, “Development of an environmentally friendly halogen-free phosphorus-nitrogen bond flame retardant for cotton fabrics,” Polymers for Advanced Technologies, vol. 23, no. 12, pp. 1555–1563, 2012.
  7. Y. Bai, X. Wang, and D. Wu, “Novel cyclolinear cyclotriphosphazene-linked epoxy resin for halogen-free fire resistance: synthesis, characterization, and flammability characteristics,” Industrial and Engineering Chemistry Research, vol. 51, no. 46, pp. 15064–15074, 2012.
  8. Z. Wang, E. Han, and W. Ke, “Influence of expandable graphite on fire resistance and water resistance of flame-retardant coatings,” Corrosion Science, vol. 49, no. 5, pp. 2237–2253, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. C. Slonczewski and P. R. Weiss, “Band structure of graphite,” Physical Review, vol. 109, no. 2, pp. 272–279, 1958. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Stankovich, D. A. Dikin, G. H. B. Dommett et al., “Graphene-based composite materials,” Nature, vol. 442, no. 7100, pp. 282–286, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova, and R. C. Haddon, “Graphite nanoplatelet-epoxy composite thermal interface materials,” Journal of Physical Chemistry C, vol. 111, no. 21, pp. 7565–7569, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. C. Hsiao, S. H. Liao, M. Y. Yen et al., “Preparation of covalently functionalized graphene using residual oxygen-containing functional groups,” ACS Applied Materials & Interfaces, vol. 2, no. 11, pp. 3092–3099, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Wei, H. Zhang, S. Guan, Z. Jiang, and X. Yue, “Preparation and characterization of transparent polyarylethers-silica hybrid membranes with covalently connected phases,” Polymer, vol. 53, pp. 5002–5009, 2012.
  14. S. Ganguli, A. K. Roy, and D. P. Anderson, “Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites,” Carbon, vol. 46, no. 5, pp. 806–817, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Perruchot, M. A. Khan, A. Kamitsi et al., “XPS characterisation of core-shell silica-polymer composite particles synthesised by atom transfer radical polymerisation in aqueous media,” European Polymer Journal, vol. 40, no. 9, pp. 2129–2141, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. T. I. T. Okpalugo, P. Papakonstantiou, H. Murphy, J. Mclaughin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalized MECNT and SWCNT,” Carbon, vol. 43, pp. 153–161, 2005.
  17. Z. X. Zhang, Y. D. Huang, T. Y. Wang, and L. Liu, “Influence of fibre surface oxidation-reduction followed by silsesquioxane coating treatment on interfacial mechanical properties of carbon fibre/polyarylacetylene composites,” Composites A, vol. 38, no. 3, pp. 936–944, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Sharma, A. Ganguly, P. Papakonstantinou et al., “Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol,” The Journal of Physical Chemistry C, vol. 114, no. 45, pp. 19459–19466, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Wang, X. Shen, B. Wang, J. Yao, and J. Park, “Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets,” Carbon, vol. 47, no. 5, pp. 1359–1364, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. T. A. Phama, J. S. Kimb, J. S. Kima, and Y. T. Jeonga, “One-step reduction of graphene oxide with L-glutathione,” Colloids and Surfaces A, vol. 384, no. 1–3, pp. 543–548, 2011.
  21. T. M. Lee, C. C. M. Ma, C. W. Hsu, and H. L. Wu, “Effect of molecular structures and mobility on the thermal and dynamical mechanical properties of thermally cured epoxy-bridged polyorganosiloxanes,” Polymer, vol. 46, no. 19, pp. 8286–8296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Hamdani, C. Longuet, D. Perrin, J. M. Lopez-cuesta, and F. Ganachaud, “Flame retardancy of silicone-based materials,” Polymer Degradation and Stability, vol. 94, no. 4, pp. 465–495, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Y. Yu, C. Y. Chen, and W. C. Chen, “Synthesis and characterization of organic-inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica,” Polymer, vol. 44, no. 3, pp. 593–601, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Xu, W. Shi, M. Gong, F. Yu, and L. Yan, “Preparation of poly(methyl methacrylate-co-maleic anhydride)/SiO2-TiO2 hybrid materials and their thermo- And photodegradation behaviors,” Journal of Applied Polymer Science, vol. 97, no. 4, pp. 1714–1724, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Macan, I. Brnardić, S. Orlić, H. Ivanković, and M. Ivanković, “Thermal degradation of epoxy—Silica organic—inorganic hybrid materials,” Polymer Degradation and Stability, vol. 91, no. 1, pp. 122–127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. C. D. Doyle, “Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis,” Analytical Chemistry, vol. 33, no. 1, pp. 77–79, 1961.
  27. G. Huang, H. Liang, Y. Wang, X. Wang, J. Gao, and Z. Fei, “Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly(vinyl alcohol),” Materials Chemistry and Physics, vol. 132, pp. 520–528, 2012.