About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 751236, 4 pages
http://dx.doi.org/10.1155/2013/751236
Research Article

Detection of Carbofuran with Immobilized Acetylcholinesterase Based on Carbon Nanotubes-Chitosan Modified Electrode

1College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
2College of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China

Received 4 January 2013; Accepted 14 February 2013

Academic Editor: Yongfeng Luo

Copyright © 2013 Shuping Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Massoulie, L. Pezzementi, S. Bon, E. Krejci, and F. M. Vallette, “Molecular and cellular biology of cholinesterases,” Progress in Neurobiology, vol. 41, no. 1, pp. 31–91, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. R. A. A. Muzzarelli and C. Muzzarelli, “Chitosan chemistry: relevance to the biomedical sciences,” Advances in Polymer Science, vol. 186, pp. 151–209, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. J. J. Davis, R. J. Coles, H. Allen, and O. Hill, “Protein electrochemistry at carbon nanotube electrodes,” Journal of Electroanalytical Chemistry, vol. 440, no. 1-2, pp. 279–282, 1997. View at Publisher · View at Google Scholar
  4. J. Zeng, W. Wei, X. Liu, Y. Wang, and G. Luo, “A simple method to fabricate a Prussian Blue nanoparticles/carbon nanotubes/poly(1,2-diaminobenzene) based glucose biosensor,” Microchim Acta, vol. 160, no. 1-2, pp. 261–267, 2008. View at Publisher · View at Google Scholar
  5. M. L. Pedano and G. A. Rivas, “Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes,” Electrochemistry Communications, vol. 6, no. 1, pp. 10–16, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Valentini, S. Oralanducci, M. L. Terranova, A. Amine, and G. Palleschi, “Carbon nanotubes as electrode materials for the assembling of new electrochemical biosensors,” Sensors and Actuators B, vol. 100, no. 1-2, pp. 117–125, 2004. View at Publisher · View at Google Scholar
  7. A. Amine, H. Mohammadi, I. Bourais, and G. Palleschi, “Enzyme inhibition-based biosensors for food safety and environmental monitoring,” Biosensors and Bioelectronics, vol. 21, no. 8, pp. 1405–1423, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. P. Zhang, L. G. Shan, Z. R. Tian, Y. Zheng, L. Y. Shi, and D. S. Zhang, “Study of enzyme biosensor based on carbon nanotubes modified electrode for detection of pesticides residue,” Chinese Chemical Letters, vol. 19, no. 5, pp. 592–594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. C. E. Banks, T. J. Davies, G. G. Wildgoose, and R. G. Compton, “Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites,” Chemical Communications, no. 7, pp. 829–841, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. P. D. Boyer, H. A. Lordy, and K. Murback, The Enzymes, vol. 7, Academic Press, New York, NY, USA, 2nd edition, 1963.