About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 764095, 7 pages
http://dx.doi.org/10.1155/2013/764095
Review Article

The Mutual Beneficial Effect between Medical Imaging and Nanomedicine

1Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
2Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, China
3Department of Nuclear Medicine, General Hospital of PLA, Beijing 100853, China

Received 13 June 2013; Accepted 15 July 2013

Academic Editor: Xiaoming Li

Copyright © 2013 Huiting Qiao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Rudin and R. Weissleder, “Molecular imaging in drug discovery and development,” Nature Reviews Drug Discovery, vol. 2, no. 2, pp. 123–131, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. S.-K. Woo, K. M. Kim, T. S. Lee et al., “Registration method for the detection of tumors in lung and liver using multimodal small animal imaging,” IEEE Transactions on Nuclear Science, vol. 56, no. 3, pp. 1454–1458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Fass, “Imaging and cancer: a review,” Molecular Oncology, vol. 2, no. 2, pp. 115–152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Weissleder, “Molecular imaging: exploring the next frontier,” Radiology, vol. 212, no. 3, pp. 609–614, 1999. View at Scopus
  5. G. Komar, M. Seppänen, O. Eskola et al., “18F-EF5: a new PET tracer for imaging hypoxia in head and neck cancer,” Journal of Nuclear Medicine, vol. 49, no. 12, pp. 1944–1951, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Höglund, A. Shirvan, G. Antoni, et al., “18FML-10, a PET tracer for apoptosis: first human study,” Journal of Nuclear Medicine, vol. 52, no. 5, pp. 720–725, 2011. View at Scopus
  7. S. Kossodo, M. Pickarski, S.-A. Lin et al., “Dual in vivo quantification of integrin-targeted and protease-activated agents in cancer using fluorescence molecular tomography (FMT),” Molecular Imaging and Biology, vol. 12, no. 5, pp. 488–499, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Hallouard, N. Anton, P. Choquet, A. Constantinesco, and T. Vandamme, “Iodinated blood pool contrast media for preclinical X-ray imaging applications—a review,” Biomaterials, vol. 31, no. 24, pp. 6249–6268, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. N. J. J. Johnson, W. Oakden, G. J. Stanisz, R. Scott Prosser, and F. C. J. M. van Veggel, “Size-tunable, ultrasmall NaGdF4 nanoparticles: insights into their T1 MRI contrast enhancement,” Chemistry of Materials, vol. 23, no. 16, pp. 3714–3722, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Wang, P. S. Billone, and W. M. Mullett, “Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials,” Journal of Nanomaterials, vol. 2013, Article ID 629681, 12 pages, 2013. View at Publisher · View at Google Scholar
  11. P. Prabhu and V. Patravale, “The upcoming field of theranostic nanomedicine: an overview,” Journal of Biomedical Nanotechnology, vol. 8, no. 6, pp. 859–882, 2012. View at Publisher · View at Google Scholar
  12. X. Li, Y. Yang, Y. Fan, Q. Feng, F. Z. Cui, and F. Watari, “Biocomposites reinforced by fibers or tubes, as scaffolds for tissue engineering or regenerative medicine,” Journal of Biomedical Materials Research A, 2013. View at Publisher · View at Google Scholar
  13. Y. Liu, H. Miyoshi, and M. Nakamura, “Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles,” International Journal of Cancer, vol. 120, no. 12, pp. 2527–2537, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Nazemi, F. Martínez, T. J. Scholl, and E. R. Gillies, “Biodegradable dendritic polymersomes as modular, high-relaxivity MRI contrast agents,” RSC Advances, vol. 2, no. 21, pp. 7971–7973, 2012. View at Publisher · View at Google Scholar
  15. D. P. Cormode, T. Skajaa, Z. A. Fayad, and W. J. M. Mulder, “Nanotechnology in medical imaging: probe design and applications,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 7, pp. 992–1000, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. J. Mieszawska, W. J. M. Mulder, Z. A. Fayad, and D. P. Cormode, “Multifunctional gold nanoparticles for diagnosis and therapy of disease,” Molecular Pharmaceutics, vol. 10, no. 3, pp. 831–847, 2013. View at Publisher · View at Google Scholar
  17. M. A. Hahn, A. K. Singh, P. Sharma, S. C. Brown, and B. M. Moudgil, “Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives,” Analytical and Bioanalytical Chemistry, vol. 399, no. 1, pp. 3–27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Li, H. Gao, M. Uo et al., “Effect of carbon nanotubes on cellular functions in vitro,” Journal of Biomedical Materials Research A, vol. 91, no. 1, pp. 132–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Li, Y. Huang, L. Zheng, et al., “Effect of substrate stiffness on the functions of rat bone marrow and adipose tissue derived mesenchymal stem cells in vitro,” Journal of Biomedical Materials Research A, 2013. View at Publisher · View at Google Scholar
  20. K. Takeda, K.-I. Suzuki, A. Ishihara et al., “Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems,” Journal of Health Science, vol. 55, no. 1, pp. 95–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science, vol. 311, no. 5761, pp. 622–627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Sharifi, S. Behzadi, S. Laurent, M. Laird Forrest, P. Stroeve, and M. Mahmoudi, “Toxicity of nanomaterials,” Chemical Society Reviews, vol. 41, no. 6, pp. 2323–2343, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Cobelli, D. Foster, and G. Toffolo, Tracer Kinetics in Biomedical Research: From Data to Model, Kluwer Academic/Plenum, New York, NY, USA, 2000.
  24. Y. Cui, J. Bai, Y. Chen, and J. Tian, “Parameter estimation for whole-body kinetic model of FDG metabolism,” Progress in Natural Science, vol. 16, no. 11, pp. 1164–1170, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Nemmar, P. H. M. Hoet, B. Vanquickenborne et al., “Passage of inhaled particles into the blood circulation in humans,” Circulation, vol. 105, no. 4, pp. 411–414, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. R. P. Choudhary, V. Fuster, and Z. A. Fayad, “Molecular, cellular and functional imaging of atherothrombosis,” Nature Reviews Drug Discovery, vol. 3, no. 11, pp. 913–925, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. M. F. Kircher and J. K. Willmann, “Molecular body imaging: MR imaging, CT, and US. Part I. Principles,” Radiology, vol. 263, no. 3, pp. 633–643, 2012. View at Publisher · View at Google Scholar
  28. C. J. Meledandri and D. F. Brougham, “Low field magnetic resonance techniques in the development of nanomaterials for biomedical applications,” Analytical Methods, vol. 4, no. 2, pp. 331–341, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. S.-B. Yu and A. D. Watson, “Metal-based X-ray contrast media,” Chemical Reviews, vol. 99, no. 9, pp. 2353–2377, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Liu, K. Ai, and L. Lu, “Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications,” Accounts of Chemical Research, vol. 45, pp. 1817–1827, 2012. View at Publisher · View at Google Scholar
  31. N. Lee, S. H. Choi, and T. Hyeon, “Nano-sized CT contrast agents,” Advanced Materials, vol. 25, no. 19, pp. 2641–2660, 2013. View at Publisher · View at Google Scholar
  32. J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, “Gold nanoparticles: a new X-ray contrast agent,” British Journal of Radiology, vol. 79, no. 939, pp. 248–253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Della Rocca, D. Liu, and W. Lin, “Nanoscale metal-organic frameworks for biomedical imaging and drug delivery,” Accounts of Chemical Research, vol. 44, no. 10, pp. 957–968, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Fang, C. Peng, R. Guo, et al., “Dendrimer-stabilized bismuth sulfide nanoparticles: synthesis, characterization, and potential computed tomography imaging applications,” The Analyst, vol. 138, no. 11, pp. 3172–3180, 2013. View at Publisher · View at Google Scholar
  35. P. Caravan, J. J. Ellison, T. J. McMurry, and R. B. Lauffer, “Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications,” Chemical Reviews, vol. 99, no. 9, pp. 2293–2352, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Sitharaman, K. R. Kissell, K. B. Hartman et al., “Superparamagnetic gadonanotubes are high-performance MRI contrast agents,” Chemical Communications, no. 31, pp. 3915–3917, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. H. B. Na, I. C. Song, and T. Hyeon, “Inorganic nanoparticles for MRI contrast agents,” Advanced Materials, vol. 21, no. 21, pp. 2133–2148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Corot, P. Robert, J.-M. Idée, and M. Port, “Recent advances in iron oxide nanocrystal technology for medical imaging,” Advanced Drug Delivery Reviews, vol. 58, no. 14, pp. 1471–1504, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. R. A. Trivedi, J.-M. U-King-Im, M. J. Graves et al., “In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI,” Stroke, vol. 35, no. 7, pp. 1631–1635, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Kattel, J. Y. Park, W. Xu et al., “Paramagnetic dysprosium oxide nanoparticles and dysprosium hydroxide nanorods as T2 MRI contrast agents,” Biomaterials, vol. 33, no. 11, pp. 3254–3261, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. X. Liu, Z. Zhong, Y. Tang, and B. Liang, “Review on the synthesis and applications of Fe3O4 nanomaterials,” Journal of Nanomaterials, vol. 2013, Article ID 902538, 7 pages, 2013. View at Publisher · View at Google Scholar
  42. L. Kostakoglu, H. Agress Jr., and S. J. Goldsmith, “Clinical role of FDG PET in evaluation of cancer patients,” Radiographics, vol. 23, no. 2, pp. 315–340, 2003. View at Scopus
  43. T. Kasai, K. Motoori, T. Horikoshi et al., “Dual-time point scanning of integrated FDG PET/CT for the evaluation of mediastinal and hilar lymph nodes in non-small cell lung cancer diagnosed as operable by contrast-enhanced CT,” European Journal of Radiology, vol. 75, no. 2, pp. 143–146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. E. M. Rohren, T. G. Turkington, and R. E. Coleman, “Clinical applications of PET in oncology,” Radiology, vol. 231, no. 2, pp. 305–332, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. C.-L. Ho, S. C. H. Yu, and D. W. C. Yeung, “11C-acetate PET imaging in hepatocellular carcinoma and other liver masses,” Journal of Nuclear Medicine, vol. 44, no. 2, pp. 213–221, 2003. View at Scopus
  46. M. J. Welch, C. J. Hawker, and K. L. Wooley, “The advantages of nanoparticles for PET,” Journal of Nuclear Medicine, vol. 50, no. 11, pp. 1743–1746, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Morales-Avila, G. Ferro-Flores, B. E. Ocampo-García, and F. de María Ramírez, “Radiolabeled nanoparticles for molecular imaging,” in Molecular Imaging, pp. 15–38, 2012.
  48. Z. Liu, W. Cai, L. He et al., “In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice,” Nature Nanotechnology, vol. 2, no. 1, pp. 47–52, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. S. D. Perrault and W. C. W. Chan, “In vivo assembly of nanoparticle components to improve targeted cancer imaging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 25, pp. 11194–11199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. T. L. Doane and C. Burda, “The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy,” Chemical Society Reviews, vol. 41, no. 7, pp. 2885–2911, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Wang, X. Gao, and X. Su, “In vitro and in vivo imaging with quantum dots,” Analytical and Bioanalytical Chemistry, vol. 397, no. 4, pp. 1397–1415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Pisani, N. Tsapis, J. Paris, V. Nicolas, L. Cattel, and E. Fattal, “Polymeric nano/microcapsules of liquid perfluorocarbons for ultrasonic imaging: physical characterization,” Langmuir, vol. 22, no. 9, pp. 4397–4402, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. X. Lin, J. Xie, G. Niu et al., “Chimeric ferritin nanocages for multiple function loading and multimodal imaging,” Nano Letters, vol. 11, no. 2, pp. 814–819, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Yang, K. Cheng, S. Qi, et al., “Affibody modified and radiolabeled gold-Iron oxide hetero-nanostructures for tumor PET, optical and MR imaging,” Biomaterials, vol. 34, no. 11, pp. 2796–2806, 2013. View at Publisher · View at Google Scholar
  55. H.-Y. Lee, Z. Li, K. Chen et al., “PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles,” Journal of Nuclear Medicine, vol. 49, no. 8, pp. 1371–1379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Gao, H. Gu, and B. Xu, “Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications,” Accounts of Chemical Research, vol. 42, no. 8, pp. 1097–1107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Liong, J. Lu, M. Kovochich et al., “Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery,” ACS Nano, vol. 2, no. 5, pp. 889–896, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. Z. Li, Q. Jin, C. Huang, et al., “Trackable and targeted phage as positron emission tomography (PET) agent for cancer imaging,” Theranostics, pp. 371–380, 2011.
  59. J. Kim, J. E. Lee, S. H. Lee et al., “Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery,” Advanced Materials, vol. 20, no. 3, pp. 478–483, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. X. Li, L. Wang, Y. Fan, Q. Feng, F.-Z. Cui, and F. Watari, “Nanostructured scaffolds for bone tissue engineering,” Journal of Biomedical Materials Research A, 2013. View at Publisher · View at Google Scholar
  61. J. Zhao and V. Castranova, “Toxicology of nanomaterials used in nanomedicine,” Journal of Toxicology and Environmental Health B: Critical Reviews, vol. 14, no. 8, pp. 593–632, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Boyer, M. R. Whittaker, V. Bulmus, J. Liu, and T. P. Davis, “The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications,” NPG Asia Materials, vol. 2, no. 1, pp. 23–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Singh and K. Kostarelos, “Designer adenoviruses for nanomedicine and nanodiagnostics,” Trends in Biotechnology, vol. 27, no. 4, pp. 220–229, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. X. Li, H. Liu, X. Niu et al., “The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo,” Biomaterials, vol. 33, no. 19, pp. 4818–4827, 2012. View at Publisher · View at Google Scholar · View at Scopus
  65. X. Li, C. A. van Blitterswijk, Q. Feng, F. Cui, and F. Watari, “The effect of calcium phosphate microstructure on bone-related cells in vitro,” Biomaterials, vol. 29, no. 23, pp. 3306–3316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. S. T. Stern and S. E. McNeil, “Nanotechnology safety concerns revisited,” Toxicological Sciences, vol. 101, no. 1, pp. 4–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. X. Li, Q. Feng, X. Liu, W. Dong, and F. Cui, “Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model,” Biomaterials, vol. 27, no. 9, pp. 1917–1923, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. K.-I. Inoue, H. Takano, R. Yanagisawa et al., “Effects of airway exposure to nanoparticles on lung inflammation induced by bacterial endotoxin in mice,” Environmental Health Perspectives, vol. 114, no. 9, pp. 1325–1330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Wang, C. Chen, Y. Liu et al., “Potential neurological lesion after nasal instillation of TiO 2 nanoparticles in the anatase and rutile crystal phases,” Toxicology Letters, vol. 183, no. 1–3, pp. 72–80, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. J. I. Phillips, F. Y. Green, J. C. A. Davies, and J. Murray, “Pulmonary and systemic toxicity following exposure to nickel nanoparticles,” American Journal of Industrial Medicine, vol. 53, no. 8, pp. 763–767, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. H. Meng, T. Xia, S. George, and A. E. Nel, “A predictive toxicological paradigm for the safety assessment of nanomaterials,” ACS Nano, vol. 3, no. 7, pp. 1620–1627, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Wang, G. Zhou, C. Chen et al., “Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration,” Toxicology Letters, vol. 168, no. 2, pp. 176–185, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. E. M. Kenyon, L. M. del Razo, and M. F. Hughes, “Tissue distribution and urinary excretion of inorganic arsenic and its methylated metabolites in mice following acute oral administration of arsenate,” Toxicological Sciences, vol. 85, no. 1, pp. 468–475, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. G. Ciofani, S. Danti, G. G. Genchi et al., “Pilot in vivo toxicological investigation of boron nitride nanotubes,” International Journal of Nanomedicine, vol. 7, pp. 19–24, 2012. View at Scopus
  75. E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chemical Society Reviews, vol. 38, no. 6, pp. 1759–1782, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Medina, M. J. Santos-Martinez, A. Radomski, O. I. Corrigan, and M. W. Radomski, “Nanoparticles: pharmacological and toxicological significance,” British Journal of Pharmacology, vol. 150, no. 5, pp. 552–558, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. U. Gaur, S. K. Sahoo, T. K. De, P. C. Ghosh, A. Maitra, and P. K. Ghosh, “Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system,” International Journal of Pharmaceutics, vol. 202, no. 1-2, pp. 1–10, 2000. View at Publisher · View at Google Scholar · View at Scopus
  78. E. Chambers and S. Mitragotri, “Long circulating nanoparticles via adhesion on red blood cells: mechanism and extended circulation,” Experimental Biology and Medicine, vol. 232, no. 7, pp. 958–966, 2007. View at Scopus
  79. M.-T. Zhu, W.-Y. Feng, Y. Wang et al., “Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment,” Toxicological Sciences, vol. 107, no. 2, pp. 342–351, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. M. R. McDevitt, D. Chattopadhyay, J. S. Jaggi et al., “PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice,” PLoS ONE, vol. 2, no. 9, article e907, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. H. Hong, Y. Zhang, J. W. Engle et al., “In vivo targeting and positron emission tomography imaging of tumor vasculature with66Ga-labeled nano-graphene,” Biomaterials, vol. 33, no. 16, pp. 4147–4156, 2012. View at Publisher · View at Google Scholar · View at Scopus
  82. S.-H. Wu, Y.-S. Lin, Y. Hung et al., “Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies,” ChemBioChem, vol. 9, no. 1, pp. 53–57, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Bertoldo, P. Vicini, G. Sambuceti, A. A. Lammertsma, O. Parodi, and C. Cobelli, “Evaluation of compartmental and spectral analysis models of [18F]FDG kinetics for heart and brain studies with PET,” IEEE Transactions on Biomedical Engineering, vol. 45, no. 12, pp. 1429–1448, 1998. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Cui, J. Bai, Y. Chen, and J. Tian, “Kinetic model parameter estimates of liver FDG metabolism,” Journal of Tsinghua University, vol. 47, no. 3, pp. 420–423, 2007. View at Scopus
  85. H. Qiao, J. Bai, Y. Chen, and J. Tian, “Modeling the excretion of FDG in human kidneys using dynamic PET,” Computers in Biology and Medicine, vol. 38, no. 11-12, pp. 1171–1176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. M. T. Hays and G. M. Segall, “A mathematical model for the distribution of fluorodeoxyglucose in humans,” Journal of Nuclear Medicine, vol. 40, no. 8, pp. 1358–1366, 1999. View at Scopus
  87. Y. Cui, J. Bai, Y. Chen, and J. Tian, “Parameter estimation for whole-body kinetic model of FDG metabolism,” Progress in Natural Science, vol. 16, no. 11, pp. 1164–1170, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. M. K. Yu, J. Park, and S. Jon, “Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy,” Theranostics, vol. 2, no. 1, pp. 3–44, 2012. View at Publisher · View at Google Scholar
  89. L.-Y. Chien, J.-K. Hsiao, S.-C. Hsu et al., “In vivo magnetic resonance imaging of cell tropsim, trafficking mechanism, and therapeutic impact of human mesenchymal stem cells in a murine glioma model,” Biomaterials, vol. 32, no. 12, pp. 3275–3284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Cho, D. Alcantara, H. Yuan, et al., “Fluorochrome-functionalized nanoparticles for imaging DNA in biological systems,” ACS Nano, vol. 7, no. 3, pp. 2032–2041, 2013. View at Publisher · View at Google Scholar
  91. M. E. Lobatto, Z. A. Fayad, S. Silvera et al., “Multimodal clinical imaging to longitudinally assess a nanomedical anti-inflammatory treatment in experimental atherosclerosis,” Molecular Pharmaceutics, vol. 7, no. 6, pp. 2020–2029, 2010. View at Publisher · View at Google Scholar · View at Scopus