About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 781212, 11 pages
http://dx.doi.org/10.1155/2013/781212
Research Article

Bacterial Filtration Using Carbon Nanotube/Antibiotic Buckypaper Membranes

1Soft Materials Group, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
2Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
3Intelligent Polymer Research Institute, ARC Centre for Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
4Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia

Received 7 November 2012; Revised 28 January 2013; Accepted 8 February 2013

Academic Editor: Yanbao Zhao

Copyright © 2013 Luke J. Sweetman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. S. Cabral, “Water microbiology. Bacterial pathogens and water,” International Journal of Environmental Research and Public Health, vol. 7, no. 10, pp. 3657–3703, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Fenwick, “Waterborne infectious diseases—could they be consigned to history?” Science, vol. 313, no. 5790, pp. 1077–1081, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. G. D. Kang and Y. M. Cao, “Development of antifouling reverse osmosis membranes for water treatment: a review,” Water Research, vol. 46, no. 3, pp. 584–600, 2012. View at Publisher · View at Google Scholar
  4. B. van der Bruggen, M. Mänttäri, and M. Nyström, “Drawbacks of applying nanofiltration and how to avoid them: a review,” Separation and Purification Technology, vol. 63, no. 2, pp. 251–263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Ulbricht, “Advanced functional polymer membranes,” Polymer, vol. 47, no. 7, pp. 2217–2262, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marĩas, and A. M. Mayes, “Science and technology for water purification in the coming decades,” Nature, vol. 452, no. 7185, pp. 301–310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. K. Holt, H. G. Park, Y. Wang et al., “Fast mass transport through sub-2-nanometer carbon nanotubes,” Science, vol. 312, no. 5776, pp. 1034–1037, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, “Nanoscale hydrodynamics: enhanced flow in carbon nanotubes,” Nature, vol. 438, no. 7064, pp. 44–46, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Srivastava, O. N. Srivastava, S. Talapatra, R. Vajtai, and P. M. Ajayan, “Carbon nanotube filters,” Nature Materials, vol. 3, no. 9, pp. 610–614, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Kang, M. Pinault, L. D. Pfefferle, and M. Elimelech, “Single-walled carbon nanotubes exhibit strong antimicrobial activity,” Langmuir, vol. 23, no. 17, pp. 8670–8673, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Kang, M. Herzberg, D. F. Rodrigues, and M. Elimelech, “Antibacterial effects of carbon nanotubes: size does matter!,” Langmuir, vol. 24, no. 13, pp. 6409–6413, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. A. S. Brady-Estévez, S. Kang, and M. Elimelech, “A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens,” Small, vol. 4, no. 4, pp. 481–484, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. S. Brady-Estévez, M. H. Schnoor, S. Kang, and M. Elimelech, “SWNT-MWNT hybrid filter attains high viral removal and bacterial inactivation,” Langmuir, vol. 26, no. 24, pp. 19153–19158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. L. J. Sweetman, L. Nghiem, I. Chironi, G. Triani, M. in het Panhuis, and S. F. Ralph, “Synthesis, properties and water permeability of SWNT buckypapers,” Journal of Materials Chemistry, vol. 22, no. 27, pp. 13800–13810, 2012. View at Publisher · View at Google Scholar
  15. L. Ji, W. Chen, S. Zheng, Z. Xu, and D. Zhu, “Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes,” Langmuir, vol. 25, no. 19, pp. 11608–11613, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Ji, W. Chen, L. Duan, and D. Zhu, “Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents,” Environmental Science and Technology, vol. 43, no. 7, pp. 2322–2327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. A. Kumar, S. F. Wang, C. T. Yeh, H. C. Lu, J. C. Yang, and Y. T. Chang, “Direct electron transfer of cytochrome C and its electrocatalytic properties on multiwalled carbon nanotubes/ciprofloxacin films,” Journal of Solid State Electrochemistry, vol. 14, no. 11, pp. 2129–2135, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. A. Kumar and S. F. Wang, “Adsorption of ciprofloxacin and its role for stabilizing multi-walled carbon nanotubes and characterization,” Materials Letters, vol. 63, no. 21, pp. 1830–1833, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. S. A. Kumar, S. F. Wang, Y. T. Chang, H. C. Lu, and C. T. Yeh, “Electrochemical properties of myoglobin deposited on multi-walled carbon nanotube/ciprofloxacin film,” Colloids and Surfaces B, vol. 82, no. 2, pp. 526–531, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of gases in multimolecular layers,” Journal of the American Chemical Society, vol. 60, no. 2, pp. 309–319, 1938. View at Scopus
  21. G. Horvath and K. Kawazoe, “Method for the calculation of effective pore size distribution in molecular sieve carbon,” Journal of Chemical Engineering of Japan, vol. 16, no. 6, pp. 470–475, 1983. View at Scopus
  22. E. P. Barrett, L. G. Joyner, and P. P. Halenda, “The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms,” Journal of the American Chemical Society, vol. 73, no. 1, pp. 373–380, 1951. View at Scopus
  23. F. M. Blighe, Y. R. Hernandez, W. J. Blau, and J. N. Coleman, “Observation of percolation-like scaling—far from the percolation threshold—in high volume fraction, high conductivity polymer-nanotube composite films,” Advanced Materials, vol. 19, no. 24, pp. 4443–4447, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Kataura, Y. Kumazawa, Y. Maniwa et al., “Optical properties of single-wall carbon nanotubes,” Synthetic Metals, vol. 103, no. 1–3, pp. 2555–2558, 1999. View at Publisher · View at Google Scholar · View at Scopus