About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 785023, 14 pages
http://dx.doi.org/10.1155/2013/785023
Research Article

Characterization of Porous WO3 Electrochromic Device by Electrochemical Impedance Spectroscopy

Department of Energy Engineering, National United University, Miaoli 36003, Taiwan

Received 4 October 2012; Accepted 22 December 2012

Academic Editor: Wen Zeng

Copyright © 2013 Chien Chon Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Djaoued, S. Balaji, and R. Brüning, “Electrochromic devices based on porous tungsten oxide thin films,” Journal of Nanomaterials, vol. 2012, Article ID 674168, 9 pages, 2012. View at Publisher · View at Google Scholar
  2. N. N. Dinh, D. H. Ninh, T. T. Thao, and T. V. Van, “Mixed nanostructured Ti-W oxides films for efficient electrochromic windows,” Journal of Nanomaterials, vol. 2012, Article ID 781236, 7 pages, 2012. View at Publisher · View at Google Scholar
  3. G. B. Smith, S. Dligatch, R. Sullivan, and M. G. Hutchins, “Thin film angular selective glazing,” Solar Energy, vol. 62, no. 3, pp. 229–244, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Mohelnikova, “Materials for reflective coatings of window glass applications,” Construction and Building Materials, vol. 23, no. 5, pp. 1993–1998, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. NREL, http://www.nrel.gov/.
  6. X. Sun, Z. Liu, and H. Cao, “Effects of film density on electrochromic tungsten oxide thin films deposited by reactive dc-pulsed magnetron sputtering,” Journal of Alloys and Compounds, vol. 504, no. 1, pp. S418–S421, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. P. M. Kadam, N. L. Tarwal, P. S. Shinde et al., “Enhanced optical modulation due to SPR in gold nanoparticles embedded WO3 thin films,” Journal of Alloys and Compounds, vol. 509, no. 5, pp. 1729–1733, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. C. M. Lampert, “Heat mirror coatings for energy conserving windows,” Solar Energy Materials, vol. 6, no. 1, pp. 1–41, 1981. View at Scopus
  9. R. E. Collins and T. M. Simko, “Current status of the science and technology of vacuum glazing,” Solar Energy, vol. 62, no. 3, pp. 189–213, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. T. S. Eriksson, C. G. Granqvist, and J. Karlsson, “Transparent thermal insulation with infrared-absorbing gases,” Solar Energy Materials, vol. 16, no. 1–3, pp. 243–253, 1987. View at Scopus
  11. H. Byker, in Proceedings of the Symposium on Electrochromic Materials II, K. C. Ho and D. A. MacArthur, Eds., vol. PV 94-2 of Electrochemical Society Proceeding Series, Pennington, NJ, USA, 1994.
  12. S. Supothina, P. Seeharaj, S. Yoriya, and M. Sriyudthsak, “Synthesis of tungsten oxide nanoparticles by acid precipitation method,” Ceramics International, vol. 33, no. 6, pp. 931–936, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. P. R. Somani and S. Radhakrishnan, “Electrochromic materials and devices: present and future,” Materials Chemistry and Physics, vol. 77, no. 1, pp. 117–133, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Nagai, G. D. McMeeking, and Y. Saitoh, “Durability of electrochromic glazing,” Solar Energy Materials and Solar Cells, vol. 56, no. 3-4, pp. 309–319, 1999. View at Scopus
  15. R. Reisfeld, M. Zayat, H. Minti, and A. Zastrow, “Electrochromic glasses prepared by the sol-gel method,” Solar Energy Materials and Solar Cells, vol. 54, no. 1–4, pp. 109–120, 1998. View at Scopus
  16. Y. Fang and P. C. Eames, “The effect of glass coating emittance and frame rebate on heat transfer through vacuum and electrochromic vacuum glazed windows,” Solar Energy Materials and Solar Cells, vol. 90, no. 16, pp. 2683–2695, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. C. Nah, A. Ghicov, D. Kim, S. Berger, and P. Schmuki, “TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties,” Journal of the American Chemical Society, vol. 130, no. 48, pp. 16154–16155, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. B. Powell, C. W. Bielawski, and A. H. Cowley, “Design, synthesis, and study of main chain poly(N-heterocyclic carbene) complexes: applications in electrochromic devices,” Journal of the American Chemical Society, vol. 132, no. 29, pp. 10184–10194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. S. Burdis and D. G. Weir, Sage Electrochromics, Electrochromic devices and methods, Patent US 2006/0209383A1, 2006.
  20. S. S. Kalagi, D. S. Dalavi, R. C. Pawar, N. L. Tarwal, S. S. Mali, and P. S. Patil, “Polymer assisted deposition of electrochromic tungsten oxide thin films,” Journal of Alloys and Compounds, vol. 493, no. 1-2, pp. 335–339, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Santato, M. Odziemkowski, M. Ulmann, and J. Augustynski, “Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications,” Journal of the American Chemical Society, vol. 123, no. 43, pp. 10639–10649, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Cai, D. Guan, and Y. Wang, “Solution processing of V2O5-WO3 composite films for enhanced Li-ion intercalation properties,” Journal of Alloys and Compounds, vol. 509, no. 3, pp. 909–915, 2010.
  23. V. Karastoyanov and M. Bojinov, “Anodic oxidation of tungsten in sulphuric acid solution-Influence of hydrofluoric acid addition,” Materials Chemistry and Physics, vol. 112, no. 2, pp. 702–710, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Kron, T. Egerter, J. H. Werner, and U. Rau, “Electronic transport in dye-sensitized nanoporous TiO2 solar cells-Comparison of electrolyte and solid-state devices,” Journal of Physical Chemistry B, vol. 107, no. 15, pp. 3556–3564, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Schwarzburg and F. Willig, “Diffusion impedance and space charge capacitance in the nanoporous dye-sensitized electrochemical solar cell,” Journal of Physical Chemistry B, vol. 107, no. 15, pp. 3552–3555, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. G. He, L. Zhao, Z. Zheng, and F. Lu, “Determination of electron diffusion coefficient and lifetime in dye-sensitized solar cells by electrochemical impedance spectroscopy at high fermi level conditions,” Journal of Physical Chemistry C, vol. 112, no. 48, pp. 18730–18733, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. C. C. Chen, D. Fang, and Z. Luo, “Fabrication and characterization of highly-ordered valve-metal oxide nanotubes and their derivative nanostructures: a review,” Reviews in Nanoscience and Nanotechnology, vol. 1, no. 4, pp. 229–256, 2012.
  28. S. R. Biaggio, R. C. Rocha-Filho, J. R. Vilche, F. E. Varela, and L. M. Gassa, “A study of thin anodic WO3 films by electrochemical impedance spectroscopy,” Electrochimica Acta, vol. 42, no. 11, pp. 1751–1758, 1997. View at Scopus
  29. J. J. Kim, D. A. Tryk, T. Amemiya, K. Hashimoto, and A. Fujishima, “Color impedance and electrochemical impedance studies of WO3 thin films: behavior of thinner films in non-aqueous electrolyte,” Journal of Electroanalytical Chemistry, vol. 433, no. 1-2, pp. 9–17, 1997. View at Scopus
  30. L. Andrade, S. M. Zakeeruddin, M. K. Nazeeruddin, H. A. Ribeiro, A. Mendes, and M. Gratzel, “Influence of sodium cations of N3 dye on the photovoltaic performance and stability of dye-sensitized solar cells,” ChemPhysChem, vol. 10, no. 7, pp. 1117–1124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Bisquert, M. Grätzel, Q. Wang, and F. Fabregat-Santiago, “Three-channel transmission line impedance model for mesoscopic oxide electrodes functionalized with a conductive coating,” Journal of Physical Chemistry B, vol. 110, no. 23, pp. 11284–11290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Franco, J. Gehring, L. M. Peter, E. A. Ponomarev, and I. Uhlendorf, “Frequency-resolved optical detection of photoinjected electrons in dye-sensitized nanocrystalline photovoltaic cells,” Journal of Physical Chemistry B, vol. 103, no. 4, pp. 692–698, 1999. View at Scopus
  33. F. Fabregat-Santiago, E. M. Barea, J. Bisquert, G. K. Mor, K. Shankar, and C. A. Grimes, “High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping,” Journal of the American Chemical Society, vol. 130, no. 34, pp. 11312–11316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions,” Electrochimica Acta, vol. 47, no. 26, pp. 4213–4225, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Hoshikawa, M. Yamada, R. Kikuchi, and K. Eguchi, “Impedance analysis of internal resistance affecting the photoelectrochemical performance of dye-sensitized solar cells,” Journal of the Electrochemical Society, vol. 152, no. 2, pp. E68–E73, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Labidi, C. Jacolin, M. Bendahan et al., “Impedance spectroscopy on WO3 gas sensor,” Sensors and Actuators B, vol. 106, no. 2, pp. 713–718, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, vol. 282, National Association of Corrosion Engineers, Houston, Tex, USA, 1974.