About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 786420, 8 pages
http://dx.doi.org/10.1155/2013/786420
Research Article

In Vitro Hydroxyapatite-Forming Ability and Antimicrobial Properties of Mesoporous Bioactive Glasses Doped with Ti/Ag

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China

Received 7 December 2012; Revised 24 February 2013; Accepted 3 March 2013

Academic Editor: Zhongkui Hong

Copyright © 2013 Huiming Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Y. Yan, L. Shirley, C. Y. Lu, and C. Céline, “Bone morphogenetic protein 2 stimulates endochondral ossification by regulating periosteal cell fate during bone repair,” Bone, vol. 47, no. 1, pp. 65–73, 2010. View at Publisher · View at Google Scholar
  2. X. F. Li, J. J. Jiang, Y. Wang, X. Nie, and F. Y. Qu, “Preparation of multilevel macroporous materials using natural plants as templates,” Journal of Sol-Gel Science and Technology, vol. 56, no. 1, pp. 75–81, 2010. View at Publisher · View at Google Scholar
  3. L. L. Hench, R. Splinter, W. Allen, and T. Greenlee, “Bonding mechanisms at the interface of ceramic prosthetic materials,” Journal of Biomedical Materials Research, vol. 5, no. 6, pp. 117–141, 1971. View at Publisher · View at Google Scholar
  4. D. Arcos, M. Vila, A. López-Noriega et al., “Mesoporous bioactive glasses: mechanical reinforcement by means of a biomimetic process,” Acta Biomaterialia, vol. 7, no. 7, pp. 2952–2959, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,” Nature, vol. 359, no. 6397, pp. 710–712, 1992. View at Scopus
  6. M. Vallet-Regi, “Ceramics for medical applications,” Journal of the Chemical Society, Dalton Transactions, no. 2, pp. 97–108, 2001.
  7. J. Schnieders, U. Gbureck, R. Thull, and T. Kissel, “Controlled release of gentamicin from calcium phosphate-poly(lactic acid-co-glycolic acid) composite bone cement,” Biomaterials, vol. 27, no. 23, pp. 4239–4249, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Xia and J. Chang, “Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system,” Journal of Controlled Release, vol. 110, no. 3, pp. 522–530, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Landi, A. Tampieri, G. Celotti, S. Sprio, M. Sandri, and G. Logroscino, “Sr-substituted hydroxyapatites for osteoporotic bone replacement,” Acta Biomaterialia, vol. 3, no. 6, pp. 961–969, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Park, G. Pekkan, and A. Ozturk, “Wear of MgO-CaO-SiO2-P2O5-F-based glass ceramics compared to selected dental ceramics,” Research Letters in Materials Science, vol. 2007, Article ID 69897, 5 pages, 2007. View at Publisher · View at Google Scholar
  11. J. Ye, P. X. Gong, P. Z. Zhi, J. X. Jing, L. Y. Jing, and H. P. Shang, “BMP-2/PLGA delayed-release microspheres composite graft, selection of bone particulate diameters, and prevention of aseptic inflammation for bone tissue engineering,” Annals of Biomedical Engineering, vol. 38, no. 3, pp. 632–639, 2010. View at Publisher · View at Google Scholar
  12. T. J. Webster, A. A. Patel, M. N. Rahaman, and B. Sonny Bal, “Anti-infective and osteointegration properties of silicon nitride, poly(ether ether ketone), and titanium implants,” Acta Biomaterialia, vol. 8, pp. 4447–4454, 2012.
  13. J. Baas, B. Elmengaard, T. B. Jensen, T. Jakobsen, N. T. Andersen, and K. Soballe, “The effect of pretreating morselized allograft bone with rhBMP-2 and/or pamidronate on the fixation of porous Ti and HA-coated implants,” Biomaterials, vol. 29, no. 19, pp. 2915–2922, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Peter, S. Emma, E. A. Ragnhild, C. György, M. Dane, and K. Sigbritt, “Antimicrobial properties of Ag+ loaded zeolite polyester polyurethane and silicone rubber and long-term properties after exposure to in-vitro ageing,” Polymer Degradation and Stability, vol. 95, no. 9, pp. 1456–1465, 2010.
  15. N. J. Coleman, A. H. Bishop, S. E. Booth, and J. W. Nicholson, “Ag+- and Zn2+-exchange kinetics and antimicrobial properties of 11 Å tobermorites,” Journal of the European Ceramic Society, vol. 29, no. 6, pp. 1109–1117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. H. R. Rong, B. Zhao, and H. C. Gu, “Review on inorganic antibacterial agents,” Chemical World, vol. 7, p. 339, 2000.
  17. A. Fujishima and T. N. Ral, “Interfacial photochemistry: fundamental and applications,” Pure and Applied Chemistry, vol. 70, no. 1, pp. 2177–2187, 1998. View at Publisher · View at Google Scholar
  18. V. Stranak, H. Wulff, H. Rebl et al., “Deposition of thin titanium–copper films with antimicrobial effect by advanced magnetron sputtering methods,” Materials Science and Engineering C, vol. 31, no. 7, pp. 1512–1519, 2011. View at Publisher · View at Google Scholar
  19. G. F. Wei, X. X. Yan, Y. Jing, et al., “Synthesis and in-vitro bioactivity of mesoporous bioactive glasses with tunable macropores,” Microporous and Mesoporous Materials, vol. 143, no. 1, pp. 157–165, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. C. Ro and I. J. Chung, “Structures and properties of silica gels prepared by the sol—gel method,” Journal of Non-Crystalline Solids, vol. 130, no. 1, pp. 8–17, 1991. View at Publisher · View at Google Scholar
  21. G. Orcel, J. Phalippou, and L. L. Hench, “Structural changes of silica xerogels during low temperature dehydration,” Journal of Non-Crystalline Solids, vol. 88, no. 1, pp. 114–130, 1986. View at Scopus
  22. N. Miyata, K. I. Fuke, Q. Chen, M. Kawashita, T. Kokubo, and T. Nakamura, “Apatite-forming ability and mechanical properties of PTMO-modified CaO-SiO2-TiO2 hybrids derived from sol-gel processing,” Biomaterials, vol. 25, no. 1, pp. 1–7, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. J. K. Teemu, E. Jaime, G. B. Enrique et al., “Bacterial adherence to SiO2-based multifunctional bioceramics,” Journal of Biomedical Materials Research A, vol. 89, no. 1, pp. 215–223, 2007.