About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 789289, 22 pages
http://dx.doi.org/10.1155/2013/789289
Review Article

A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications

1Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
2School of Pharmacy and Pharmaceutical Sciences, St. John’s University of Tanzania, Dodoma, Tanzania

Received 21 November 2012; Accepted 20 December 2012

Academic Editor: Lianjun Wang

Copyright © 2013 Viness Pillay et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Ma, M. Kotaki, T. Yong, W. He, and S. Ramakrishna, “Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering,” Biomaterials, vol. 26, no. 15, pp. 2527–2536, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. J. P. Chen, G. Y. Chang, and J. K. Chen, “Electrospun collagen/chitosan nanofibrous membrane as wound dressing,” Colloids and Surfaces A, vol. 313-314, pp. 183–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. T. G. Kim, D. S. Lee, and T. G. Park, “Controlled protein release from electrospun biodegradable fiber mesh composed of poly(ε-caprolactone) and poly(ethylene oxide),” International Journal of Pharmaceutics, vol. 338, no. 1-2, pp. 276–283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Maretschek, A. Greiner, and T. Kissel, “Electrospun biodegradable nanofiber nonwovens for controlled release of proteins,” Journal of Controlled Release, vol. 127, no. 2, pp. 180–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Verreck, I. Chun, J. Rosenblatt et al., “Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer,” Journal of Controlled Release, vol. 92, no. 3, pp. 349–360, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. X. L. Deng, G. Sui, M. L. Zhao, G. Q. Chen, and X. P. Yang, “Poly(L-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning,” Journal of Biomaterials Science, vol. 18, no. 1, pp. 117–130, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. P. X. Ma and R. Zhang, “Synthetic nano-scale fibrous extracellular matrix,” Journal of Biomedical Materials Research, vol. 46, no. 1, pp. 60–72, 1999.
  8. D. Liu, H. Zhang, P. C. M. Grim et al., “Self-assembly of polyphenylene dendrimers into micrometer long nanofibers: an atomic force microscopy study,” Langmuir, vol. 18, no. 6, pp. 2385–2391, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Liu, L. Qiao, and A. Guo, “Diblock copolymer nanofibers,” Macromolecules, vol. 29, no. 16, pp. 5508–5510, 1996.
  10. X. Yan, G. Liu, F. Liu, et al., “Superparamagnetic triblock copolymer/Fe2O3 hybrid nanofibers,” Angewandte Chemie International Edition, vol. 40, no. 19, pp. 3593–3596, 2001.
  11. C.-G. Wu and T. Bein, “Conducting polyaniline filaments in a mesoporous channel host,” Science, vol. 264, no. 5166, pp. 1757–1759, 1994. View at Scopus
  12. L. Feng, S. Li, H. Li, et al., “Super-hydrophobic surface of aligned polyacrylonitrile nanofibers,” Angewandte Chemie International Edition, vol. 41, no. 7, pp. 1221–1223, 2002.
  13. T. Ondarcuhu and C. Joachim, “Drawing a single nanofiber over hundreds of microns,” Europhysics Letters, vol. 42, no. 2, pp. 215–220, 1998.
  14. P. K. Baumgarten, “Electrostatic spinning of acrylic microfibers,” Journal of Colloid and Interface Science, vol. 36, no. 1, pp. 71–79, 1971. View at Scopus
  15. J. Doshi and D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” Journal of Electrostatics, vol. 35, no. 2-3, pp. 151–160, 1995. View at Scopus
  16. G. Taylor, “Electrically driven jets,” Proceedings of the Royal Society of London A, vol. 313, no. 1515, pp. 453–475, 1969.
  17. D. Liang, B. S. Hsiao, and B. Chu, “Functional electrospun nanofibrous scaffolds for biomedical applications,” Advanced Drug Delivery Reviews, vol. 59, no. 14, pp. 1392–1412, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. G. G. Wallace, M. J. Higgins, S. E. Moulton, and C. Wang, “Nanobionics: the impact of nanotechnology on implantable medical bionic devices,” Nanoscale, vol. 4, no. 15, pp. 4327–4347, 2012.
  19. D. H. Reneker and I. Chun, “Nanometre diameter fibres of polymer, produced by electro-spinning,” Nanotechnology, vol. 7, no. 3, pp. 216–223, 1996.
  20. D. Li and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?” Advanced Materials, vol. 16, no. 14, pp. 1151–1170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, “Electrospinning and electrically forced jets. I. Stability theory,” Physics of Fluids, vol. 13, no. 8, pp. 2201–2220, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, “The effect of processing variables on the morphology of electrospun nanofibers and textiles,” Polymer, vol. 42, no. 1, pp. 261–272, 2001. View at Scopus
  23. N. Bhardwaj and S. C. Kundu, “Electrospinning: a fascinating fiber fabrication technique,” Biotechnology Advances, vol. 28, no. 3, pp. 325–347, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Zeleny, “The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces,” Physical Review, vol. 3, no. 2, pp. 69–91, 1914. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Zeleny, “Instability of electrified liquid surfaces,” Physical Review, vol. 10, no. 1, pp. 1–6, 1917. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Zeleny, “The role of surface instability in electrical discharges from drops of alcohol and water in air at atmospheric pressure,” Journal of the Franklin Institute, vol. 219, no. 6, pp. 659–675, 1935. View at Scopus
  27. A. Formhals, “Process and apparatus for preparing artificial threads,” US Patent 1-975-504, 1934.
  28. A. Formhals, “Method and apparatus for spinning,” US Patent 2-160-962, 1939.
  29. A. Formhals, “Artificial thread and method of producing same,” US Patent 2-187-306, 1940.
  30. A. Formhals, “Production of artificial fibres from fibre forming liquids,” US Patent 2-323-025, 1934.
  31. L. Larrondo and R. S. J. Manley, “Electrostatic fiber spinning from polymer melts. 1. Experimental-observations on fiber formation and properties,” Journal of Polymer Science A, vol. 19, no. 6, pp. 909–920, 1981. View at Scopus
  32. L. Larrondo and R. S. J. Manley, “Electrostatic fiber spinning from polymer melts. 2. Examination of the flow field in an electrically driven jet,” Journal of Polymer Science A, vol. 19, no. 6, pp. 921–932, 1981. View at Scopus
  33. W. Yao, J. Yang, J. Wang, and L. Tao, “Synthesis and electrochemical performance of carbon nanofiber-cobalt oxide composites,” Electrochimica Acta, vol. 53, no. 24, pp. 7326–7330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. W. L. Yao, J. L. Wang, J. Yang, and G. D. Du, “Novel carbon nanofiber-cobalt oxide composites for lithium storage with large capacity and high reversibility,” Journal of Power Sources, vol. 176, no. 1, pp. 369–372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. A. G. MacDiarmid, W. E. Jones, I. D. Norris et al., “Electrostatically-generated nanofibers of electronic polymers,” Synthetic Metals, vol. 119, no. 1–3, pp. 27–30, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, and D. R. Lee, “Vanadium pentoxide nanofibers by electrospinning,” Scripta Materialia, vol. 49, no. 6, pp. 577–581, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Allaoui, S. V. Hoa, and M. D. Pugh, “The electronic transport properties and microstructure of carbon nanofiber/epoxy composites,” Composites Science and Technology, vol. 68, no. 2, pp. 410–416, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Xin, Z. Huang, W. Li, Z. Jiang, Y. Tong, and C. Wang, “Core-sheath functional polymer nanofibers prepared by co-electrospinning,” European Polymer Journal, vol. 44, no. 4, pp. 1040–1045, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. W. Ju, J. H. Park, H. R. Jung, S. J. Cho, and W. J. Lee, “Electrospun MnFe2O4 nanofibers: preparation and morphology,” Composites Science and Technology, vol. 68, no. 7-8, pp. 1704–1709, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Tan, X. Feng, B. Zhao, Y. Zou, and X. Huang, “Preparation and photoluminescence properties of electrospun nanofibers containing PMO-PPV and Eu(ODBM)3phen,” Materials Letters, vol. 62, no. 16, pp. 2419–2421, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Gong, C. L. Shao, G. C. Yang, Y. Pan, and L. Y. Qu, “Preparation of ultra-fine fiber mats contained H4SiW12O40,” Inorganic Chemistry Communications, vol. 6, no. 7, pp. 916–918, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Bai, Y. Li, M. Li, S. Wang, C. Zhang, and Q. Yang, “Electrospinning method for the preparation of silver chloride nanoparticles in PVP nanofiber,” Applied Surface Science, vol. 254, no. 15, pp. 4520–4523, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Li, G. Han, and B. Yang, “Fabrication of the catalytic electrodes for methanol oxidation on electrospinning-derived carbon fibrous mats,” Electrochemistry Communications, vol. 10, no. 6, pp. 880–883, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. S. H. Park, C. Kim, Y. O. Choi, and K. S. Yang, “Preparations of pitch-based CF/ACF webs by electrospinning,” Carbon, vol. 41, no. 13, pp. 2655–2657, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. C. Ahn, S. K. Park, G. T. Kim et al., “Development of high efficiency nanofilters made of nanofibers,” Current Applied Physics, vol. 6, no. 6, pp. 1030–1035, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. P. P. Tsai, H. Schreuder-Gibson, and P. Gibson, “Different electrostatic methods for making electret filters,” Journal of Electrostatics, vol. 54, no. 3-4, pp. 333–341, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. A. A. Ali, “New generation of super absorber nano-fibroses hybrid fabric by electro-spinning,” Journal of Materials Processing Technology, vol. 199, no. 1, pp. 193–198, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Y. Oh, Y. W. Ju, M. Y. Kim, et al., “Adsorption of toluene on carbon nanofibers prepared by electro-spinning,” Science of the Total Environment, vol. 393, no. 2-3, pp. 341–347, 2008.
  49. B. Ding, J. Kim, Y. Miyazaki, and S. Shiratori, “Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection,” Sensors and Actuators B, vol. 101, no. 3, pp. 373–380, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. Z. F. Li, F. D. Blum, M. F. Bertino, C. S. Kim, and S. K. Pillalamarri, “One-step fabrication of a polyaniline nanofiber vapor sensor,” Sensors and Actuators B, vol. 134, no. 1, pp. 31–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Sawicka, P. Gouma, and S. Simon, “Electrospun biocomposite nanofibers for urea biosensing,” Sensors and Actuators B, vol. 108, no. 1-2, pp. 585–588, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Song, C. Pan, J. Li, R. Zhang, X. Wang, and Z. Gu, “Blends of TiO2 nanoparticles and poly (N-isopropylacrylamide)-co-polystyrene nanofibers as a means to promote the biorecognition of an anticancer drug,” Talanta, vol. 75, no. 4, pp. 1035–1040, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. E. R. Kenawy, F. I. Abdel-Hay, M. H. El-Newehy, and G. E. Wnek, “Controlled release of ketoprofen from electrospun poly(vinyl alcohol) nanofibers,” Materials Science and Engineering A, vol. 459, no. 1-2, pp. 390–396, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Tungprapa, I. Jangchud, and P. Supaphol, “Release characteristics of four model drugs from drug-loaded electrospun cellulose acetate fiber mats,” Polymer, vol. 48, no. 17, pp. 5030–5041, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Liang, Y. K. Luu, K. Kim, B. S. Hsiao, M. Hadjiargyrou, and B. Chu, “In vitro non-viral gene delivery with nanofibrous scaffolds,” Nucleic Acids Research, vol. 33, no. 19, article e170, 2005. View at Scopus
  56. B. Chu, D. Liang, M. Hadjiargyrou, and B. S. Hsiao, “A new pathway for developing in vitro nanostructured non-viral gene carriers,” Journal of Physics Condensed Matter, vol. 18, no. 36, supplement, pp. S2513–S2525, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. X. Zong, S. Li, E. Chen et al., “Prevention of postsurgery-induced abdominal adhesions by electrospun bioabsorbable nanofibrous poly(lactide-co-glycolide)-based membranes,” Annals of Surgery, vol. 240, no. 5, pp. 910–915, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. M. S. Khil, D. I. Cha, H. Y. Kim, I. S. Kim, and N. Bhattarai, “Electrospun nanofibrous polyurethane membrane as wound dressing,” Journal of Biomedical Materials Research B, vol. 67, no. 2, pp. 675–679, 2003. View at Scopus
  59. Q. Z. Chen, I. D. Thompson, and A. R. Boccaccini, “45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 11, pp. 2414–2425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, “A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering,” Biomaterials, vol. 24, no. 12, pp. 2077–2082, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. X. Xu, X. Chen, A. Liu, Z. Hong, and X. Jing, “Electrospun poly(l-lactide)-grafted hydroxyapatite/poly(l-lactide) nanocomposite fibers,” European Polymer Journal, vol. 43, no. 8, pp. 3187–3196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Y. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, “Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering,” Biomaterials, vol. 25, no. 5, pp. 877–886, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. C. M. Vaz, S. van Tuijl, C. V. C. Bouten, and F. P. T. Baaijens, “Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique,” Acta Biomaterialia, vol. 1, no. 5, pp. 575–582, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, “Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering,” Biomaterials, vol. 26, no. 15, pp. 2603–2610, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. E. Schnell, K. Klinkhammer, S. Balzer et al., “Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend,” Biomaterials, vol. 28, no. 19, pp. 3012–3025, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Y. Chew, R. Mi, A. Hoke, and K. W. Leong, “The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation,” Biomaterials, vol. 29, no. 6, pp. 653–661, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. C. H. Lee, H. J. Shin, I. H. Cho et al., “Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast,” Biomaterials, vol. 26, no. 11, pp. 1261–1270, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Sahoo, H. Ouyang, C. H. James, T. E. Tay, and S. L. Toh, “Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering,” Tissue Engineering, vol. 12, no. 1, pp. 91–99, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Liao, R. Murugan, C. K. Chan, and S. Ramakrishna, “Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 1, no. 3, pp. 252–260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. F. Yang, J. G. C. Wolke, and J. A. Jansen, “Biomimetic calcium phosphate coating on electrospun poly(ε-caprolactone) scaffolds for bone tissue engineering,” Chemical Engineering Journal, vol. 137, no. 1, pp. 154–161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. J. C. J. Hogan and P. Biswas, “Narrow size distribution nanoparticle production by electrospray processing of ferritin,” Journal of Aerosol Science, vol. 39, no. 5, pp. 432–440, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Jaworek, “Micro- and nanoparticle production by electrospraying,” Powder Technology, vol. 176, no. 1, pp. 18–35, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. T. Subbiah, G. S. Bhat, R. W. Tock, S. Parameswaran, and S. S. Ramkumar, “Electrospinning of nanofibers,” Journal of Applied Polymer Science, vol. 96, no. 2, pp. 557–569, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. T. J. Sill and H. A. von Recum, “Electrospinning: applications in drug delivery and tissue engineering,” Biomaterials, vol. 29, no. 13, pp. 1989–2006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. A. K. Haghi and M. Akbari, “Trends in electrospinning of natural nanofibers,” Physica Status Solidi (A) Applications and Materials, vol. 204, no. 6, pp. 1830–1834, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. K. J. Pawlowski, C. P. Barnes, E. D. Boland, G. E. Wnek, and G. L. Bowlin, “Biomedical nanoscience: electrospinning basic concepts, applications, and classroom demonstration,” Materials Research Society Symposium Proceedings, vol. 827, pp. 17–28, 2004.
  77. C. Meechaisue, R. Dubin, P. Supaphol, V. P. Hoven, and J. Kohn, “Electrospun mat of tyrosine-derived polycarbonate fibers for potential use as tissue scaffolding material,” Journal of Biomaterials Science, vol. 17, no. 9, pp. 1039–1056, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, “Structure and process relationship of electrospun bioabsorbable nanofiber membranes,” Polymer, vol. 43, no. 16, pp. 4403–4412, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Megelski, J. S. Stephens, D. Bruce Chase, and J. F. Rabolt, “Micro- and nanostructured surface morphology on electrospun polymer fibers,” Macromolecules, vol. 35, no. 22, pp. 8456–8466, 2002. View at Publisher · View at Google Scholar · View at Scopus
  80. S. A. Theron, E. Zussman, and A. L. Yarin, “Experimental investigation of the governing parameters in the electrospinning of polymer solutions,” Polymer, vol. 45, no. 6, pp. 2017–2030, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. J. Venugopal, Y. Z. Zhang, and S. Ramakrishna, “Electrospun nanofibers: biomedical applications,” Proceedings of the Institution of Mechanical Engineers N, vol. 218, pp. 35–45, 2005.
  82. A. Greiner and J. H. Wendorff, “Electrospinning: a fascinating method for the preparation of ultrathin fibers,” Angewandte Chemie, vol. 46, no. 30, pp. 5670–5703, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. H. Fong, I. Chun, and D. H. Reneker, “Beaded nanofibers formed during electrospinning,” Polymer, vol. 40, no. 16, pp. 4585–4592, 1999. View at Publisher · View at Google Scholar · View at Scopus
  84. J. Lannutti, D. Reneker, T. Ma, D. Tomasko, and D. Farson, “Electrospinning for tissue engineering scaffolds,” Materials Science and Engineering C, vol. 27, no. 3, pp. 504–509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. Q. Yang, L. I. Zhenyu, Y. Hong et al., “Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning,” Journal of Polymer Science B, vol. 42, no. 20, pp. 3721–3726, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. W. K. Son, J. H. Youk, T. S. Lee, and W. H. Park, “The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers,” Polymer, vol. 45, no. 9, pp. 2959–2966, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham et al., “Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers,” European Polymer Journal, vol. 41, no. 3, pp. 409–421, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. L. Huang, K. Nagapudi, P. R. Apkarian, and E. L. Chaikof, “Engineered collagen—PEO nanofibers and fabrics,” Journal of Biomaterials Science, vol. 12, no. 9, pp. 979–993, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. Y. H. Jung, H. Y. Kim, D. R. Lee, and S. Y. Park, “Characterization of PVOH nonwoven mats prepared from surfactant-polymer system via electrospinning,” Macromolecular Research, vol. 13, no. 5, pp. 385–390, 2005.
  90. T. Lin, H. Wang, H. Wang, and X. Wang, “The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene,” Nanotechnology, vol. 15, no. 9, pp. 1375–1381, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. J. Zeng, X. Xu, X. Chen et al., “Biodegradable electrospun fibers for drug delivery,” Journal of Controlled Release, vol. 92, no. 3, pp. 227–231, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. Z. M. Huang, C. L. He, A. Yang, et al., “Encapsulating drugs in biodegradable ultrafine fibres through co-axial electro-spinning,” Journal of Biomedical Materials Research A, vol. 77, no. 1, pp. 169–179, 2006.
  93. K. Kim, Y. K. Luu, C. Chang et al., “Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds,” Journal of Controlled Release, vol. 98, no. 1, pp. 47–56, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. X. Xu, X. Chen, P. Ma, X. Wang, and X. Jing, “The release behavior of doxorubicin hydrochloride from medicated fibers prepared by emulsion-electrospinning,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 70, no. 1, pp. 165–170, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. S. H. Ranganath and C. H. Wang, “Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma,” Biomaterials, vol. 29, no. 20, pp. 2996–3003, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Y. Chew, J. Wen, E. K. F. Yim, and K. W. Leong, “Sustained release of proteins from electrospun biodegradable fibers,” Biomacromolecules, vol. 6, no. 4, pp. 2017–2024, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. C. Burger and B. Chu, “Functional nanofibrous scaffolds for bone reconstruction,” Colloids and Surfaces B, vol. 56, no. 1-2, pp. 134–141, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Prabaharan, R. Jayakumar, and S. V. Nair, “Electrospun nanofibrous scaffolds-current status and prospects in drug delivery,” Advances in Polymer Science, vol. 246, pp. 241–262, 2012.
  99. E. Luong-Van, L. Grøndahl, K. N. Chua, K. W. Leong, V. Nurcombe, and S. M. Cool, “Controlled release of heparin from poly(ε-caprolactone) electrospun fibers,” Biomaterials, vol. 27, no. 9, pp. 2042–2050, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. C. L. He, Z. M. Huang, X. J. Han, L. Liu, H. S. Zhang, and L. S. Chen, “Coaxial electrospun poly(L-lactic acid) ultrafine fibers for sustained drug delivery,” Journal of Macromolecular Science B, vol. 45, no. 4, pp. 515–524, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. P. Taepaiboon, U. Rungsardthong, and P. Supaphol, “Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs,” Nanotechnology, vol. 17, no. 9, pp. 2317–2329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. P. Taepaiboon, U. Rungsardthong, and P. Supaphol, “Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 67, no. 2, pp. 387–397, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. O. Suwantong, P. Opanasopit, U. Ruktanonchai, and P. Supaphol, “Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance,” Polymer, vol. 48, no. 26, pp. 7546–7557, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. J. Zeng, L. Yang, Q. Liang et al., “Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation,” Journal of Controlled Release, vol. 105, no. 1-2, pp. 43–51, 2005. View at Publisher · View at Google Scholar · View at Scopus
  105. D. Yang, Y. Li, and J. Nie, “Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs,” Carbohydrate Polymers, vol. 69, no. 3, pp. 538–543, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. H. Qi, P. Hu, J. Xu, and A. Wang, “Encapsulation of drug reservoirs in fibers by emulsion electrospinning: morphology characterization and preliminary release assessment,” Biomacromolecules, vol. 7, no. 8, pp. 2327–2330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. E. R. Kenawy, G. L. Bowlin, K. Mansfield et al., “Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend,” Journal of Controlled Release, vol. 81, no. 1-2, pp. 57–64, 2002. View at Publisher · View at Google Scholar · View at Scopus
  108. X. Xu, L. Yang, X. Xu et al., “Ultrafine medicated fibers electrospun from W/O emulsions,” Journal of Controlled Release, vol. 108, no. 1, pp. 33–42, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. A. Chunder, S. Sarkar, Y. Yu, and L. Zhai, “Fabrication of ultrathin polyelectrolyte fibers and their controlled release properties,” Colloids and Surfaces B, vol. 58, no. 2, pp. 172–179, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. C. He, Z. Huang, and X. Han, “Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications,” Journal of Biomedical Materials Research B, vol. 89, no. 1, pp. 80–95, 2008.
  111. X. Li, H. Zhang, H. Li, G. Tang, Y. Zhao, and X. Yuan, “Self-accelerated biodegradation of electrospun poly(ethylene glycol)-poly(l-lactide) membranes by loading proteinase K,” Polymer Degradation and Stability, vol. 93, no. 3, pp. 618–626, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. M. Jacoby, “Hollow nanofibers in a single step: electrospinning, sol-gel chemistry are combined to form nanotubular fibers,” Chemical and Engineering New, vol. 82, no. 17, p. 6, 2004.
  113. C. Wang, K. W. Yan, Y. D. Lin, and P. C. H. Hsieh, “Biodegradable core/shell fibers by coaxial electrospinning: processing, fiber characterization, and its application in sustained drug release,” Macromolecules, vol. 43, no. 15, pp. 6389–6397, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. X. Li, Y. Su, S. Liu, L. Tan, X. Mo, and S. Ramakrishna, “Encapsulation of proteins in poly(l-lactide-co-caprolactone) fibers by emulsion electrospinning,” Colloids and Surfaces B, vol. 75, no. 2, pp. 418–424, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. N. Bölgen, I. Vargel, P. Korkusuz, Y. Z. Menceloǧlu, and E. Pişkin, “In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions,” Journal of Biomedical Materials Research B, vol. 81, no. 2, pp. 530–543, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. Y. Z. Zhang, J. Venugopal, Z. M. Huang, C. T. Lim, and S. Ramakrishna, “Crosslinking of the electrospun gelatin nanofibers,” Polymer, vol. 47, no. 8, pp. 2911–2917, 2006.
  117. R. P. Shaikh, P. Kumar, Y. E. Choonara, L. C. du Toit, and V. Pillay, “Crosslinked electrospun PVA nanofibrous membranes: elucidation of their physicochemical, physicomechanical and molecular disposition,” Biofabrication, vol. 4, Article ID 025002, 2 pages, 2012. View at Publisher · View at Google Scholar
  118. C. Tang, C. D. Saquing, J. R. Harding, and S. A. Khan, “In situ cross-linking of electrospun poly(vinyl alcohol) nanofibers,” Macromolecules, vol. 43, no. 2, pp. 630–637, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. B. Sharma and J. H. Elisseeff, “Engineering structurally organized cartilage and bone tissues,” Annals of Biomedical Engineering, vol. 32, no. 1, pp. 148–159, 2004. View at Publisher · View at Google Scholar · View at Scopus
  120. X. Liu and P. X. Ma, “Polymeric scaffolds for bone tissue engineering,” Annals of Biomedical Engineering, vol. 32, no. 3, pp. 477–486, 2004. View at Publisher · View at Google Scholar · View at Scopus
  121. B. Viswanath and N. Ravishankar, “Porous biphasic scaffolds and coatings for biomedical applications via morphology transition of nanorods,” Nanotechnology, vol. 18, no. 47, Article ID 475604, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. V. Maquet, A. R. Boccaccini, L. Pravata, I. Notingher, and R. Jérôme, “Porous poly(α-hydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation,” Biomaterials, vol. 25, no. 18, pp. 4185–4194, 2004. View at Publisher · View at Google Scholar · View at Scopus
  123. S. J. Lee, J. Liu, S. H. Oh, S. Soker, A. Atala, and J. J. Yoo, “Development of a composite vascular scaffolding system that withstands physiological vascular conditions,” Biomaterials, vol. 29, no. 19, pp. 2891–2898, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. M. Sato, Y. Nakazawa, R. Takahashi et al., “Small-diameter vascular grafts of Bombyx mori silk fibroin prepared by a combination of electrospinning and sponge coating,” Materials Letters, vol. 64, no. 16, pp. 1786–1788, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. K. T. Shalumon, K. H. Anulekha, K. P. Chennazhi, H. Tamura, S. V. Nair, and R. Jayakumar, “Fabrication of chitosan/poly(caprolactone) nanofibrous scaffold for bone and skin tissue engineering,” International Journal of Biological Macromolecules, vol. 48, no. 4, pp. 571–576, 2011. View at Publisher · View at Google Scholar · View at Scopus
  126. D. Yang, Y. Jin, Y. Zhou et al., “In situ mineralization of hydroxyapatite on electrospun chitosan-based nanofibrous scaffolds,” Macromolecular Bioscience, vol. 8, no. 3, pp. 239–246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. Y. S. Zhou, D. Yang, X. Chen, Q. Xu, F. Lu, and J. Nie, “Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration,” Biomacromolecules, vol. 9, no. 1, pp. 349–354, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. Z. G. Wang, J. Q. Wang, and Z. K. Xu, “Immobilization of lipase from Candida rugosa on electrospun polysulfone nanofibrous membranes by adsorption,” Journal of Molecular Catalysis B, vol. 42, no. 1-2, pp. 45–51, 2006. View at Publisher · View at Google Scholar · View at Scopus
  129. S. F. Li, J. P. Chen, and W. T. Wu, “Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization,” Journal of Molecular Catalysis B, vol. 47, no. 3-4, pp. 117–124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  130. Y. Wang and Y. L. Hsieh, “Immobilization of lipase enzyme in polyvinyl alcohol (PVA) nanofibrous membranes,” Journal of Membrane Science, vol. 309, no. 1-2, pp. 73–81, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. X. J. Huang, A. G. Yu, and Z. K. Xu, “Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application,” Bioresource Technology, vol. 99, no. 13, pp. 5459–5465, 2008. View at Publisher · View at Google Scholar · View at Scopus
  132. R. M. Schek, J. M. Taboas, S. J. Hollister, and P. H. Krebsbach, “Tissue engineering osteochondral implants for temporomandibular joint repair,” Orthodontics–Craniofacial Research, vol. 8, no. 4, pp. 313–319, 2005. View at Scopus
  133. B. P. Chan and K. W. Leong, “Scaffolding in tissue engineering: general approaches and tissue-specific considerations,” European Spine Journal, vol. 17, no. 4, supplement, pp. S467–S479, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. X. Miao, D. M. Tan, J. Li, Y. Xiao, and R. Crawford, “Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid),” Acta Biomaterialia, vol. 4, no. 3, pp. 638–645, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. C. Erisken, D. M. Kalyon, and H. Wang, “Functionally graded electrospun polycaprolactone and β-tricalcium phosphate nanocomposites for tissue engineering applications,” Biomaterials, vol. 29, no. 30, pp. 4065–4073, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. J. Zhou, C. Cao, X. Ma, and J. Jin, “Electrospinning of silk fibroin and collagen for vascular tissue engineering,” International Journal of Biological Macromolecules, vol. 47, no. 4, p. 514, 2010.
  137. X. J. Huang, A. G. Yu, J. Jiang, C. Pan, J. W. Qian, and Z. K. Xu, “Surface modification of nanofibrous poly(acrylonitrile-co-acrylic acid) membrane with biomacromolecules for lipase immobilization,” Journal of Molecular Catalysis B, vol. 57, no. 1–4, pp. 250–256, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. S. F. Li and W. T. Wu, “Lipase-immobilized electrospun PAN nanofibrous membranes for soybean oil hydrolysis,” Biochemical Engineering Journal, vol. 45, no. 1, pp. 48–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  139. B. Liu, P. Li, C. L. Zhang, Y. Wang, and Y. S. Zhao, “Theanine synthesized by immobilizing Pseudomonas nitroreducens LY in nanofibrous membranes,” Process Biochemistry, vol. 45, no. 8, pp. 1330–1333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. X. Kang, C. Pan, Q. Xu et al., “The investigation of electrospun polymer nanofibers as a solid-phase extraction sorbent for the determination of trazodone in human plasma,” Analytica Chimica Acta, vol. 587, no. 1, pp. 75–81, 2007. View at Publisher · View at Google Scholar · View at Scopus
  141. L. Wu, X. Zhang, and H. Ju, “Amperometric glucose sensor based on catalytic reduction of dissolved oxygen at soluble carbon nanofiber,” Biosensors and Bioelectronics, vol. 23, no. 4, pp. 479–484, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. X. Wang, T. Yang, X. Li, and K. Jiao, “Three-step electrodeposition synthesis of self-doped polyaniline nanofiber-supported flower-like Au microspheres for high-performance biosensing of DNA hybridization recognition,” Biosensors and Bioelectronics, vol. 26, no. 6, pp. 2953–2959, 2011. View at Publisher · View at Google Scholar · View at Scopus
  143. T. Yang, Y. Feng, W. Zhang, S. Ma, and K. Jiao, “Synergistic membrane of ZrO2/self-doped polyaniline nanofibres fabricated by controllable electrodeposition for DNA hybridization detection,” Journal of Electroanalytical Chemistry, vol. 656, no. 1-2, pp. 140–146, 2011. View at Publisher · View at Google Scholar · View at Scopus
  144. P. Gomathi, D. Ragupathy, J. H. Choi et al., “Fabrication of novel chitosan nanofiber/gold nanoparticles composite towards improved performance for a cholesterol sensor,” Sensors and Actuators B, vol. 153, no. 1, pp. 44–49, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. Z. Du, C. Li, L. Li, M. Zhang, S. Xu, and T. Wang, “Simple fabrication of a sensitive hydrogen peroxide biosensor using enzymes immobilized in processable polyaniline nanofibers/chitosan film,” Materials Science and Engineering C, vol. 29, no. 6, pp. 1794–1797, 2009. View at Publisher · View at Google Scholar · View at Scopus
  146. Y. Tan, J. Kan, and S. Li, “Amperometric biosensor for catechol using electrochemical template process,” Sensors and Actuators B, vol. 152, no. 2, pp. 285–291, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. Y. Gao, X. Li, J. Gong, B. Fan, Z. Su, and L. Qu, “Polyaniline nanotubes prepared using fiber mats membrane as the template and their gas-response behavior,” Journal of Physical Chemistry C, vol. 112, no. 22, pp. 8215–8222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. N. J. Pinto, I. Ramos, R. Rojas, P. C. Wang, and A. T. Johnson, “Electric response of isolated electrospun polyaniline nanofibers to vapors of aliphatic alcohols,” Sensors and Actuators B, vol. 129, no. 2, pp. 621–627, 2008. View at Publisher · View at Google Scholar · View at Scopus
  149. O. Landau, A. Rothschild, and E. Zussman, “Processing-microstructure-propertìes correlation of ultrasensitive gas sensors produced by electrospinning,” Chemistry of Materials, vol. 21, no. 1, pp. 9–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  150. J. Zhang, J. Lei, Y. Liu, J. Zhao, and H. Ju, “Highly sensitive amperometric biosensors for phenols based on polyaniline-ionic liquid-carbon nanofiber composite,” Biosensors and Bioelectronics, vol. 24, no. 7, pp. 1858–1863, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. X. Wang, C. Drew, S. H. Lee, et al., “Electrospun nanofibrousmembranes for highly sensitive optical sensors,” Nano Letters, vol. 2, no. 11, pp. 1273–1275, 2002.
  152. X. Wang, Y. G. Kim, C. Drew, B. C. Ku, J. Kumar, and L. A. Samuelson, “Electrostatic assembly of conjugated polymer thin layers on electrospun nanofibrous membranes for biosensors,” Nano Letters, vol. 4, no. 2, pp. 331–334, 2004. View at Publisher · View at Google Scholar · View at Scopus
  153. C. Jianrong, M. Yuqing, H. Nongyue, W. Xiaohua, and L. Sijiao, “Nanotechnology and biosensors,” Biotechnology Advances, vol. 22, no. 7, pp. 505–518, 2004. View at Publisher · View at Google Scholar · View at Scopus
  154. K. Ramanathan, M. A. Bangar, M. Yun, et al., “Bioaffinity sensing using biologically functionalized conducting-polymer nanowire,” Journal of American Chemical Society, vol. 127, no. 2, pp. 496–497, 2005.
  155. N. Kattamuri, J. H. Shin, B. Kang, et al., “Development and surface characterization of positively charged filters,” Journal of Materials Science, vol. 40, no. 17, pp. 4531–4539, 2005.
  156. S. Ramakrishna, K. Fujihara, W. E. Teo, T. Yong, Z. Ma, and R. Ramaseshan, “Electrospun nanofibers: solving global issues,” Materials Today, vol. 9, no. 3, pp. 40–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  157. C. Burger, B. S. Hsiao, and B. Chu, “Nanofibrous marterials and their applications,” Annual Review of Materials Research, vol. 36, pp. 333–368, 2006.
  158. E. H. Jeong, J. Yang, and J. H. Youk, “Preparation of polyurethane cationomer nanofiber mats for use in antimicrobial nanofilter applications,” Materials Letters, vol. 61, no. 18, pp. 3991–3994, 2007. View at Publisher · View at Google Scholar · View at Scopus