About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 790323, 9 pages
http://dx.doi.org/10.1155/2013/790323
Research Article

Optimal Size of Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy under Different Conditions

Department of Chemistry, University of South Florida, Tampa, FL 33620, USA

Received 29 November 2012; Accepted 13 May 2013

Academic Editor: Jun Li

Copyright © 2013 Seongmin Hong and Xiao Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Xia, J. Wang, S. Tong, G. Liu, J. Li, and H. Zhang, “Design and construction of a sensitive silver substrate for surface-enhanced Raman scattering spectroscopy,” Vibrational Spectroscopy, vol. 47, no. 2, pp. 124–128, 2008. View at Publisher · View at Google Scholar
  2. Y. Wang, H. Wei, B. Li et al., “SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity,” Chemical Communications, no. 48, pp. 5220–5222, 2007. View at Publisher · View at Google Scholar
  3. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science, vol. 275, no. 5303, pp. 1102–1106, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. R. J. Dijkstra, W. J. J. M. Scheenen, N. Dam, E. W. Roubos, and J. J. ter Meulen, “Monitoring neurotransmitter release using surface-enhanced Raman spectroscopy,” Journal of Neuroscience Methods, vol. 159, no. 1, pp. 43–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Ni, R. J. Lipert, G. B. Dawson, and M. D. Porter, “Immunoassay readout method using extrinsic raman labels adsorbed on immunogold colloids,” Analytical Chemistry, vol. 71, no. 21, pp. 4903–4908, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Moskovits, “Spectroscopy: expanding versatility,” Nature, vol. 464, no. 7287, p. 357, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. R. A. Alvarez-Puebla and L. M. Liz-Marzán, “SERS-based diagnosis and biodetection,” Small, vol. 6, no. 5, pp. 604–610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Mannelli and M. P. Marco, “Recent advances in analytical and bioanalysis applications of noble metal nanorods,” Analytical and Bioanalytical Chemistry, vol. 398, no. 6, pp. 2451–2469, 2010. View at Publisher · View at Google Scholar
  9. T. Vo-Dinh, H. N. Wang, and J. Scaffidi, “Plasmonic nanoprobes for SERS biosensing and bioimaging,” Journal of Biophotonics, vol. 3, no. 1-2, pp. 89–102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine, vol. 6, no. 2, pp. 214–226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. S. Seney, B. M. Gutzman, and R. H. Goddard, “Correlation of size and surface-enhanced raman scattering activity of optical and spectroscopic properties for silver nanoparticles,” Journal of Physical Chemistry C, vol. 113, no. 1, pp. 74–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. K. G. Stamplecoskie, J. C. Scaiano, V. S. Tiwari, and H. Anis, “Optimal size of silver nanoparticles for surface-enhanced raman spectroscopy,” Journal of Physical Chemistry C, vol. 115, no. 5, pp. 1403–1409, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics, vol. 2, no. 3, pp. 107–118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. C. Boca, C. Farcau, and S. Astilean, “The study of Raman enhancement efficiency as function of nanoparticle size and shape,” Nuclear Instruments and Methods in Physics Research Section B, vol. 267, no. 2, pp. 406–410, 2009. View at Publisher · View at Google Scholar
  15. J. K. Yoon, K. Kim, and K. S. Shin, “Raman scattering of 4-aminobenzenethiol sandwiched between Au nanoparticles and a macroscopically smooth Au substrate: effect of size of Au nanoparticles,” Journal of Physical Chemistry C, vol. 113, no. 5, pp. 1769–1774, 2009. View at Publisher · View at Google Scholar
  16. J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced raman scattering,” Journal of Physical Chemistry B, vol. 110, no. 35, pp. 17444–17451, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. P. N. Njoki, I. I. S. Lim, D. Mott et al., “Size correlation of optical and spectroscopic properties for gold nanoparticles,” Journal of Physical Chemistry C, vol. 111, no. 40, pp. 14664–14669, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Cyrankiewicz, T. Wybranowski, and S. Kruszewski, “Study of SERS efficiency of metallic colloidal systems,” Journal of Physics: Conference Series, vol. 79, no. 1, Article ID 012013, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, “Determination of size and concentration of gold nanoparticles from UV-Vis spectra,” Analytical Chemistry, vol. 79, no. 11, pp. 4215–4221, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Y. Hleb and D. O. Lapotko, “Photothermal properties of gold nanoparticles under exposure to high optical energies,” Nanotechnology, vol. 19, no. 35, Article ID 355702, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. E. Herrera and N. Sakulchaicharoen, “Microscopic and spectroscopic characterization of nanoparticles,” Drugs and the Pharmaceutical Sciences, vol. 191, p. 239, 2009.
  22. J. A. Creighton, “Metal colloids,” in Surface Enhanced Raman Scattering, R. K. Chang and T. E. Furtak, Eds., p. 315, Plenum, New York, NY, USA, 1982.
  23. Z. Kolska, J. Riha, V. Hnatowicz, and V. Svorcik, “Lattice parameter and expected density of Au nano-structures sputtered on glass,” Materials Letters, vol. 64, no. 10, pp. 1160–1162, 2010. View at Publisher · View at Google Scholar
  24. K. Kim and H. S. Lee, “Effect of Ag and Au nanoparticles on the SERS of 4-aminobenzenethiol assembled on powdered copper,” Journal of Physical Chemistry B, vol. 109, no. 40, pp. 18929–18934, 2005. View at Publisher · View at Google Scholar
  25. M. E. Abdelsalam, “Surface enhanced raman scattering of aromatic thiols adsorbed on nanostructured gold surfaces,” Central European Journal of Chemistry, vol. 7, no. 3, pp. 446–453, 2009. View at Publisher · View at Google Scholar
  26. V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray, “Non-resonance SERS effects of silver colloids with different shapes,” Chemical Physics Letters, vol. 446, no. 1–3, pp. 77–82, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” Journal of Physical Chemistry C, vol. 111, no. 37, pp. 13794–13803, 2007. View at Publisher · View at Google Scholar
  28. W. B. Cai, B. Ren, X. Q. Li et al., “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surface Science, vol. 406, no. 1–3, pp. 9–22, 1998. View at Publisher · View at Google Scholar
  29. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” Journal of Physical Chemistry B, vol. 107, no. 3, pp. 668–677, 2003. View at Publisher · View at Google Scholar
  30. S. Ghoshal, D. Mitra, S. Roy, and D. D. Majumder, “Biosensors and biochips for nanomedical applications: a review,” Sensors and Transducers Journal, vol. 113, no. 2, pp. 1–17, 2010.
  31. S. A. Maie, Plasmonics: Fundamentals and Applications, Springer, New York, NY, USA, 1st edition, 2006.
  32. M. Moskovits, “Surface-enhanced spectroscopy,” Reviews of Modern Physics, vol. 57, no. 3, pp. 783–826, 1985. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. S. Chen, Y. C. Hung, I. Liau, and G. S. Huang, “Assessment of the in vivo toxicity of gold nanoparticles,” Nanoscale Research Letters, vol. 4, no. 8, pp. 858–864, 2009. View at Publisher · View at Google Scholar · View at Scopus