About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 792875, 7 pages
http://dx.doi.org/10.1155/2013/792875
Research Article

Thermoelectric Properties of Carbon Nanotube and Nanofiber Based Ethylene-Octene Copolymer Composites for Thermoelectric Devices

1Polymer Centre, Faculty of Technology, T. Bata University, T.G.M. 275, 762 72 Zlin, Czech Republic
2Centre of Polymer Systems, University Institute, T. Bata University, Nad Ovcirnou 3685, 760 01 Zlin, Czech Republic
3Institute of Hydrodynamics, Academy of Sciences, Pod Patankou 5, 166 12 Prague 6, Czech Republic
4Deptartment of Polymer Engineering, Faculty of Technology, T. Bata University in Zlin, T.G.M. 275, 762 72 Zlin, Czech Republic

Received 12 June 2013; Revised 30 August 2013; Accepted 31 August 2013

Academic Editor: Jung-Kun Lee

Copyright © 2013 P. Slobodian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. I. Ismail and W. H. Ahmed, “Thermoelectric power generation using waste-heat energy as an alternative green technology,” Recent Patents on Electrical Engineering, vol. 2, no. 1, pp. 27–39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. C. A. Hewitt, A. B. Kaiser, S. Roth, M. Craps, R. Czerw, and D. L. Carroll, “Multilayered carbon nanotube/polymer composite based thermoelectric fabrics,” Nano Letters, vol. 12, no. 3, pp. 1307–1310, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. C. A. Hewitt, A. B. Kaiser, S. Roth, M. Craps, R. Czerw, and D. L. Carroll, “Varying the concentration of single walled carbon nanotubes in thin film polymer composites, and its effect on thermoelectric power,” Applied Physics Letters, vol. 98, no. 18, Article ID 183110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Yu, Y. S. Kim, D. Kim, and J. C. Grunlan, “Thermoelectric behavior of segregated-network polymer nanocomposites,” Nano Letters, vol. 8, no. 12, pp. 4428–4432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Chen, X. Gui, Z. Wang et al., “Superlow thermal conductivity 3D carbon nanotube network for thermoelectric applications,” ACS Applied Materials and Interfaces, vol. 4, no. 1, pp. 81–86, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. G. P. Moriarty, J. N. Wheeler, C. Yu, and J. C. Grunlan, “Increasing the thermoelectric power factor of polymer composites using a semiconducting stabilizer for carbon nanotubes,” Carbon, vol. 50, no. 3, pp. 885–895, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. D. D. Freeman, K. Choi, and C. Yu, “N-type thermoelectric performance of functionalized carbon nanotube-filled polymer composites,” PLoS ONE, vol. 7, Article ID e47822, 2012.
  8. C. Bounioux, P. Diaz-Chao, M. Campoy-Quiles et al., “Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor,” Energy and Environmental Science, vol. 6, pp. 918–925, 2013.
  9. Y. Du, S. Z. Shen, K. Cai, and P. S. Casey, “Research progress on polymer-inorganic thermoelectric nanocomposite materials,” Progress in Polymer Science, vol. 37, pp. 820–841, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. G. H. Kim, L. Shao, K. Zhang, and K. P. Pipe, “Engineered doping of organic semiconductors for enhanced thermoelectric efficiency,” Nature Materials, vol. 12, pp. 719–723, 2013.
  11. O. Bubnova and X. Crispin, “Towards polymer-based organic thermoelectric generators,” Energy and Environmental Science, vol. 5, pp. 9345–9362, 2012.
  12. N. Toshima, N. Jiravanichanun, and H. Marutani, “Organic thermoelectric materials composed of conducting polymers and metal nanoparticles,” Journal of Electronic Materials, vol. 41, pp. 1735–1742, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Yue, S. Chen, C. Liu et al., “Synthesis, characterization, and thermoelectric properties of a conducting copolymer of 1,12-bis(carbazolyl)dodecane and thieno[3,2-b]thiophene,” Journal of Solid State Electrochemistry, vol. 16, no. 1, pp. 117–126, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Chatterjee, M. Mitra, K. Kargupta, S. Ganguly, and D. Banerjee, “Synthesis, characterization and enhanced thermoelectric performance of structurally ordered cable-like novel polyaniline-bismuth telluride nanocomposite,” Nanotechnology, vol. 24, Article ID 215703, 2013.
  15. G. P. Moriarty, S. De, P. J. King et al., “Thermoelectric behavior of organic thin film nanocomposites,” Journal of Polymer Science B, vol. 51, pp. 119–123, 2013.
  16. C. Yu, K. Choi, L. Yin, and J. C. Grunlan, “Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors,” ACS Nano, vol. 5, no. 10, pp. 7885–7892, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Antar, J. F. Feller, H. Noël, P. Glouannec, and K. Elleuch, “Thermoelectric behaviour of melt processed carbon nanotube/graphite/ poly(lactic acid) conductive biopolymer nanocomposites (CPC),” Materials Letters, vol. 67, no. 1, pp. 210–214, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Slobodian, P. Riha, A. Lengalova, and P. Saha, “Compressive stress-electrical conductivity characteristics of multiwall carbon nanotube networks,” Journal of Materials Science, vol. 46, no. 9, pp. 3186–3190, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Slobodian, P. Riha, and P. Saha, “A highly-deformable composite composed of an entangled network of electrically-conductive carbon-nanotubes embedded in elastic polyurethane,” Carbon, vol. 50, pp. 3446–3453, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. J. E. Lozano, Fruit Manufacturing: Scientific Basis, Engineering Properties, and Deteriorative Reactions of Technological Importance, Springer, New York, NY, USA, 2006.
  21. P. Svoboda, R. Theravalappil, S. Poongavalappil et al., “A study on electrical and thermal conductivities of ethylene-octene copolymer/expandable graphite composites,” Polymer Engineering and Science, vol. 52, pp. 1241–1249, 2012. View at Publisher · View at Google Scholar · View at Scopus