About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 801850, 11 pages
http://dx.doi.org/10.1155/2013/801850
Research Article

Carbon Nanotube-Epoxy Nanocomposites: Correlation and Integration of Dynamic Impedance, Dielectric, and Mechanical Analyses

1Division of Mechanical, Medical and Aerospace Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
2Department of Electronic Engineering, University of Surrey, Advanced Technology Institute (ATI), Faculty of Engineering and Physical Sciences and Guildford, Surrey GU2 7XH, UK

Received 26 September 2012; Accepted 23 December 2012

Academic Editor: Jinquan Wei

Copyright © 2013 O. Moudam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Njuguna, K. Pielichowski, and J. R. Alcock, “Epoxy-based fibre reinforced nanocomposites,” Advanced Engineering Materials, vol. 9, no. 10, pp. 835–847, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. D.-K. Choi, S.-H. Jin, and D.-S. Lee, “Preparation and properties of pyrene-modified multi—walled carbon nanotube/epoxy resin nanocomposites,” Macromolecular Symposia, vol. 264, no. 1, pp. 100–106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. K. S. Seo and D. S. Kim, “Curing behavior and structure of an epoxy/clay nanocomposite system,” Polymer Engineering and Science, vol. 46, no. 9, pp. 1318–1325, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Lu, H. Shen, Z. Song, K. S. Shing, W. Tao, and S. Nutt, “Rod-like silicate-epoxy nanocomposites,” Macromolecular Rapid Communications, vol. 26, no. 18, pp. 1445–1450, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Hartwing, M. Sebald, D. Putz, and L. Aberle, “Preparation, characterisation and properties of nanocomposites based on epoxy resins—an overview,” Macromolecular Symposia, vol. 221, pp. 127–136, 2005.
  6. C. M. Manjunatha, A. C. Taylor, and A. J. Kinloch, “The tensile fatigue behavior of a GFRP composite with rubber particle modified Epoxy matrix,” Journal of Materials Science, vol. 44, pp. 342–345, 2009.
  7. J. Choi, A. F. Yee, and R. M. Laine, “Toughening of cubic silsesquioxane epoxy nanocomposites using core-shell rubber particles: a three-component hybrid system,” Macromolecules, vol. 37, no. 9, pp. 3267–3276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. K.-C. Cheng, C.-M. Lin, S.-F. Wang, S. T. Lin, and C. F. Yang, “Dielectric properties of epoxy resin-barium titanate composites at high frequency,” Materials Letters, vol. 61, no. 3, pp. 757–760, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Dispenza, J. T. Carter, P. T. McGrail, and G. Spadaro, “Cure behaviour of epoxy matrices for carbon fibre composites,” Polymer International, vol. 48, pp. 1229–1236, 1999.
  10. M. Q. Zhang, M. Z. Rong, H. B. Zhang, and K. Friedrich, “Mechanical properties of low nano-silica filled high density polyethylene composites,” Polymer Engineering and Science, vol. 43, no. 2, pp. 490–500, 2003. View at Scopus
  11. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991. View at Scopus
  12. S. Li, Y. Qin, J. Shi, Z.-X. Guo, Y. Li, and D. Zhu, “Electrical properties of soluble carbon nanotube/polymer composite films,” Chemistry of Materials, vol. 17, pp. 130–135, 2005.
  13. H. Dai, “Carbon nanotubes: synthesis, integration, and properties,” Accounts of Chemical Research, vol. 35, pp. 1035–1044, 2002.
  14. R. H. Baughman, A. A. Zakhidov, and W. A. De Heer, “Carbon nanotubes—the route toward applications,” Science, vol. 297, no. 5582, pp. 787–792, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Shimizu, H. Abe, A. Ando, Y. Nakayama, and H. Tokumoto, “Electrical conductivity measurements of a multi-walled carbon nanotube,” Surface and Interface Analysis, vol. 37, no. 2, pp. 204–207, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Hone, Encyclopedia of Nanoscience and Nanothechnology, 2004.
  17. T. Arie, N. Yoshida, S. Akita, and Y. Nakayam, “Quantitative analysis of the magnetic properties of a carbon nanotube probe in magnetic force Microscopy,” Journal of Physics D, vol. 34, pp. L43–L45, 2001.
  18. C. Q. Sun, H. L. Bai, B. K. Tay, S. Li, and E. Y. Jiang, “Dimension, strength, and chemical and thermal stability of a single C–C bond in carbon nanotubes,” Journal of Physical Chemistry B, vol. 107, no. 31, pp. 7544–7546, 2003. View at Scopus
  19. W. Chen, X. Tao, and Y. Liu, “Carbon nanotube-reinforced polyurethane composite fibers,” Composites Science and Technology, vol. 66, no. 15, pp. 3029–3034, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Jell, R. Verdejo, L. Safinia, M. S. P. Shaffer, M. M. Stevens, and A. Bismarck, “Carbon nanotube-enhanced polyurethane scaffolds fabricated by thermally induced phase separation,” Journal of Materials Chemistry, vol. 18, no. 16, pp. 1865–1872, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Song, D. Yang, and L. He, “Preparation of Semi-aromatic polyamide(PA)/multi-wall carbon nanotube (MWCNT) composites and its dynamic mechanical properties,” Journal of Materials Science, vol. 43, no. 4, pp. 1205–1213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Schartel, P. Pötschke, U. Knoll, and M. Abdel-Goad, “Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites,” European Polymer Journal, vol. 41, no. 5, pp. 1061–1070, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Zhang, J. Zhang, R. Wang, T. Zhu, and Z. Liu, “Surfactant-directed polypyrrole/CNT nanocables: synthesis, characterization, and enhanced electrical properties,” ChemPhysChem, vol. 5, no. 7, pp. 998–1002, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Long, Z. Chen, X. Zhang, J. Zhang, and Z. Liu, “Electrical properties of multi-walled carbon nanotube/polypyrrole nanocables: percolation-dominated conductivity,” Journal of Physics D, vol. 37, no. 14, pp. 1965–1969, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Wang, H. Gu, and T. M. Swager, “Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents,” Journal of the American Chemical Society, vol. 130, no. 16, pp. 5392–5393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. R. Karim, J. H. Yeum, M. S. Lee, and K. T. Lim, “Synthesis of conducting polythiophene composites with multi-walled carbon nanotube by the γ-radiolysis polymerization method,” Materials Chemistry and Physics, vol. 112, no. 3, pp. 779–782, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S.-M. Yuen, C.-C. M. Ma, C.-C. Teng, H. H. O. Wu, H.-C. Kuan, and C.-L. Chiang, “Molecular motion, morphology, and thermal properties of multiwall carbon nanotube/polysilsesquioxane composite,” Journal of Polymer Science B, vol. 46, no. 5, pp. 472–482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S.-M. Yuen and C.-C. M. Ma, “Morphological, electrical, and mechanical properties of multiwall carbon nanotube/polysilsesquioxane composite,” Journal of Applied Polymer Science, vol. 109, no. 3, pp. 2000–2007, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. A. A. Koval'chuk, A. N. Shchegolikhin, V. G. Shevchenko, P. M. Nedorezova, A. N. Klyamkina, and A. M. Aladyshev, “Synthesis and properties of polypropylene/multiwall carbon nanotube composites,” Macromolecules, vol. 41, no. 9, pp. 3149–3156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. M. V. Jose, D. Dean, J. Tyner, G. Price, and E. Nyairo, “Polypropylene/carbon nanotube nanocomposite fibers: process-morphology—property relationships,” Journal of Applied Polymer Science, vol. 103, no. 6, pp. 3844–3850, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. S.-M. Yuen, M. Chen-Chi, H.-H. Wu et al., “Preparation and thermal, electrical, and morphological properties of multiwalled carbon nanotube and epoxy composites,” Journal of Applied Polymer Science, vol. 103, no. 2, pp. 1272–1278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Tian and X. Wang, “Fabrication and performances of epoxy/multi-walled carbon nanotubes/piezoelectric ceramic composites as rigid piezo-damping materials,” Journal of Materials Science, vol. 43, no. 14, pp. 4979–4987, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Njuguna and K. Pielichowski, “Polymer nanocomposites for aerospace applications: properties,” Advanced Engineering Materials, vol. 5, no. 11, pp. 769–778, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Wang, Y. Xu, X. Chen, and X. Sun, “Capacitance properties of single wall carbon nanotube/polypyrrole composite films,” Composites Science and Technology, vol. 67, no. 14, pp. 2981–2985, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. M. H. G. Wichmann, S. T. Buschhorn, L. Böger, R. Adelung, and K. Schulte, “Direction sensitive bending sensors based on multi-wall carbon nanotube/epoxy nanocomposites,” Nanotechnology, vol. 19, no. 47, Article ID 475503, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. Y.-H. Yun, V. Shanov, M. J. Schulz et al., “Development of novel single-wall carbon nanotube-epoxy composite ply actuators,” Smart Materials and Structures, vol. 14, no. 6, pp. 1526–1532, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Baibarac and P. Gómez-Romero, “Nanocomposites based on conducting polymers and carbon nanotubes: from fancy materials to functional applications,” Journal of Nanoscience and Nanotechnology, vol. 6, no. 2, pp. 289–302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Rebord, N. Hansrisuk, B. Lindsay, C. Lekakou, G. T. Reed, and J. F. Watts, “Electrofunctional polymer nanocomposites,” in Proceedings of the 2nd Electronics Systemintegration Technology Conference (ESTC '08), pp. 1401–1405, Greenwich, UK, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Lekakou, I. Kontodimopoulos, A. K. Murugesh et al., “Processability studies of silica-thermoset polymer matrix nanocomposites,” Polymer Engineering and Science, vol. 48, no. 2, pp. 216–222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Schueler, J. Petermannz, K. Schulte, and H.-P. Wentzel, “Percolation in carbon black filled epoxy resin,” Macromolecular Symposia, vol. 104, pp. 261–268, 1996.
  41. J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, and A. H. Windle, “Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites,” Polymer, vol. 44, no. 19, pp. 5893–5899, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Chang, K. Friedrich, L. Ye, and P. Toro, “Evaluation and visualisation of the percolating networks in multi-wall carbon/epoxy composites,” Journal of Materials Science, vol. 44, pp. 4003–4012, 2009.
  43. C.-S. Zhang, Q.-Q. Ni, S.-Y. Fu, and K. Kurashiki, “Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer,” Composites Science and Technology, vol. 67, no. 14, pp. 2973–2980, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Li, Y. Huang, F. Du et al., “Electromagnetic Interference (EMI) shielding of single-walled carbon nanotube Epoxy composites,” Nano Letters, vol. 6, no. 6, pp. 1141–1145, 2006.
  45. M. K. Yeh, N. H. Tai, G. C. Ling, and C. Y. Huang, “Electromagnetic shielding of multi-walled carbon nanotube/epoxy nanocomposites,” Advanced Materials Research, vol. 47–50, pp. 475–478, 2008. View at Scopus
  46. X. Guo, D. Yu, Y. Gao, Q. Li, W. Wan, and Z. Gao, “Dielectric properties of filled carbon nanotubes/epoxy composites with high dielectric constant,” in Proceedings of the 1st IEEE International Conference on Nano Micro Engineered and Molecular Systems, pp. 295–298, Zhuhai, China, January 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Hollertz, S. Chatterjee, H. Gutmann, T. Geiger, F. A. Nüesch, and B. T. T. Chu, “Improvement of toughness and electrical properties of epoxy composites with carbon nanotubes prepared by industrially relevant processes,” Nanotechnology, vol. 22, no. 12, Article ID 125702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Liu, K. C. Etika, K. S. Liao, L. A. Hess, D. E. Bergbreiter, and J. C. Grunlan, “Comparison of covalently and noncovalently functionalized carbon nanotubes in epoxy,” Macromolecular Rapid Communications, vol. 30, no. 8, pp. 627–632, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. A. V. Gromov, N. Gray, P. A. Szilagyi, and E. E. B. Campbell, “Direct grafting of carbon nanotubes with ethylenediamine,” Journal of Materials Chemistry, vol. 22, pp. 21242–21248, 2012.
  50. N. B. T. Asari-Mansor, J.-P. Tessonnier, A. Rinaldi, S. Reiche, and M. G. Kutty, “Chemically modified multi-walled carbon nanotubes (MWCNTs) with anchored acidic groups,” Sains Malaysiana, vol. 41, no. 5, pp. 603–609, 2012.
  51. A. K. Murugesh, A. Uthayanan, and C. Lekakou, “Electrophoresis and orientation of multiple wall carbon nanotubes in polymer solution,” Applied Physics A, vol. 100, no. 1, pp. 135–144, 2010. View at Publisher · View at Google Scholar · View at Scopus