About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 802174, 8 pages
http://dx.doi.org/10.1155/2013/802174
Research Article

Understanding the Formation of the Self-Assembly of Colloidal Copper Nanoparticles by Surfactant: A Molecular Velcro

1CTI Renato Archer, Micro Systems Division, Campinas 13069-901, Brazil
2Applied Nanotechnology Laboratory, CTI Renato Archer, Campinas 13069-901, Brazil
3INCT NAMITEC, Campinas 13069-901, Brazil
4CTI Renato Archer, Information Displays Division, Campinas 13069-901, Brazil
5Faculty of Electrical and Computer Engineering, CCS/UNICAMP, Campinas 13083-970, Brazil

Received 27 August 2012; Revised 11 January 2013; Accepted 11 January 2013

Academic Editor: Zhenhui Kang

Copyright © 2013 Raquel Kely Bortoleto-Bugs et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Zhang, C. Shen, S. Chen et al., “Morphologies and microstructures of nano-sized Cu2O particles using a cetyltrimethylammonium template,” Nanotechnology, vol. 16, no. 2, pp. 267–272, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Gao, J. Zhang, J. Zhu et al., “Vacancy-mediated magnetism in pure copper oxide nanoparticles,” Nanoscale Research Letters, vol. 5, no. 4, pp. 769–772, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Poliakoff, J. M. Fitzpatrick, T. R. Farren, and P. T. Anastas, “Green chemistry: science and politics of change,” Science, vol. 297, no. 5582, pp. 807–810, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. M. P. Pileni, “The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals,” Nature Materials, vol. 2, no. 3, pp. 145–150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. R. W. J. Scott, O. M. Wilson, and R. M. Crooks, “Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles,” Journal of Physical Chemistry B, vol. 109, no. 2, pp. 692–704, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Mott, J. Galkowski, L. Wang, J. Luo, and C. J. Zhong, “Synthesis of size-controlled and shaped copper nanoparticles,” Langmuir, vol. 23, no. 10, pp. 5740–5745, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Magdassi, M. Grouchko, and A. Kamyshny, “Copper nanoparticles for printed electronics: routes towards achieving oxidation stability,” Materials, vol. 3, pp. 4626–4638, 2010.
  8. X. Li, H. Gao, C. J. Murphy, and L. Gou, “Nanoindentation of Cu2O nanocubes,” Nano Letters, vol. 4, no. 10, pp. 1903–1907, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. J. J. Brege, C. E. Hamilton, C. A. Crouse, and A. R. Barron, “Ultrasmall copper nanoparticles from a hydrophobically immobilized surfactant template,” Nano Letters, vol. 9, no. 6, pp. 2239–2242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Grzelczak, J. Vermant, M. E. Furst, and M. L. Liz-Marzan, “Directed self-assembly of nanoparticles,” ACS Nano, vol. 4, pp. 3591–3605, 2010.
  11. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” Journal of Physical Chemistry B, vol. 107, no. 3, pp. 668–677, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Huitink, S. Kundu, C. Park, B. Mallick, J. Z. Huang, and H. Liang, “Nanoparticle shape evolution identified through multivariate statistics,” Journal of Physical Chemistry A, vol. 114, no. 17, pp. 5596–5600, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. K. Mehta, S. Kumar, S. Chaudhary, K. K. Bhasin, and M. Gradzielski, “Evolution of ZnS nanoparticles via facile CTAB aqueous micellar solution route: a study on controlling parameters,” Nanoscale Research Letters, vol. 4, no. 1, pp. 17–28, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. D. E. Diaz-Droguett, R. Espinoza, and V. M. Fuenzalida, “Copper nanoparticles grown under hydrogen: study of the surface oxide,” Applied Surface Science, vol. 257, no. 10, pp. 4597–4602, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. N. D. Hoa, S. Y. An, N. Q. Dung, N. Van Quy, and D. Kim, “Synthesis of p-type semiconducting cupric oxide thin films and their application to hydrogen detection,” Sensors and Actuators B, vol. 146, no. 1, pp. 239–244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Gou and C. J. Murphy, “Solution-phase synthesis of Cu2O nanocubes,” Nano Letters, vol. 3, no. 2, pp. 231–234, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Yin, C. K. Wu, Y. Lou et al., “Copper oxide nanocrystals,” Journal of the American Chemical Society, vol. 127, no. 26, pp. 9506–9511, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Ren, D. Hu, E. W. Cheng, M. A. Vargas-Reus, P. Reip, and R. P. Allaker, “Characterizations of copper oxide nanoparticles for antimicrobial applications,” International Journal of Antimicrobial Agents, vol. 33, pp. 587–590, 2009.
  19. C.-J. Li and B. M. Trost, “Green chemistry for chemical synthesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 36, pp. 13197–13202, 2008.
  20. X. Liang, L. Gao, S. Yang, and J. Sun, “Facile synthesis and shape evolution of single-crystal cuprous oxide,” Advanced Materials, vol. 21, no. 20, pp. 2068–2071, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Lisiecki, F. Billoudet, and M. P. Pileni, “Control of the shape and the size of copper metallic particles,” Journal of Physical Chemistry, vol. 100, no. 10, pp. 4160–4166, 1996. View at Scopus
  22. D. W. Zhang, C. H. Chen, J. Zhang, and F. Ren, “Novel electrochemical milling method to fabricate copper nanoparticles and nanofibers,” Chemistry of Materials, vol. 17, no. 21, pp. 5242–5245, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Blosi, S. Albonetti, M. Dondi, C. Martelli, and G. Baldi, “Microwave-assisted polyol synthesis of Cu nanoparticles,” Journal of Nanoparticle Research, vol. 13, no. 1, pp. 127–138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. H. S. Kim, S. R. Dhage, D. E. Shim, and H. T. Hahn, “Intense pulsed light sintering of copper nanoink for printed electronics,” Applied Physics A, vol. 97, no. 4, pp. 791–798, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Ryu, H. S. Kim, and H. T. Hahn, “Reactive sintering of copper nanoparticles using intense pulsed light for printed electronics,” Journal of Electronic Materials, vol. 40, no. 1, pp. 42–50, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Jeong, H. C. Song, W. W. Lee et al., “Stable aqueous based Cu nanoparticle ink for printing well-defined highly conductive features on a plastic substrate,” Langmuir, vol. 27, no. 6, pp. 3144–3149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Kang, S. Han, J. Kim, S. Ko, and M. Yang, “One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticles,” The Journal of Physical Chemistry C, vol. 115, pp. 23664–23670, 2011.
  28. H. Wang, Q. Shen, X. Li, and F. Liu, “Fabrication of copper oxide dumbbell-like architectures via the hydrophobic interaction of adsorbed hydrocarbon chains,” Langmuir, vol. 25, no. 5, pp. 3152–3158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Zeng and S. C. Zimmerman, “Dendrimers in supramolecular chemistry: from molecular recognition to self-assembly,” Chemical Reviews, vol. 97, no. 5, pp. 1681–1712, 1997. View at Scopus
  30. A. K. Ganguli, A. Ganguly, and S. Vaidya, “Microemulsion-based synthesis of nanocrystalline materials,” Chemical Society Reviews, vol. 39, pp. 474–485, 2010.
  31. A. Cifuentes, J. L. Bernal, and J. C. Diez-Masa, “Determination of critical micelle concentration values using capillary electrophoresis instrumentation,” Analytical Chemistry, vol. 69, no. 20, pp. 4271–4274, 1997. View at Scopus
  32. M. F. Ottaviani, P. Andechaga, N. J. Turro, and D. A. Tomalia, “Model for the interactions between anionic dendrimers and cationic surfactants by means of the spin probe method,” Journal of Physical Chemistry B, vol. 101, no. 31, pp. 6057–6065, 1997. View at Scopus
  33. J. J. J. M. Donners, B. R. Heywood, E. W. Meijer et al., “Amorphous calcium carbonate stabilised by poly(propylene imine) dendrimers,” Chemical Communications, no. 19, pp. 1937–1938, 2000. View at Scopus
  34. S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fréchet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology, vol. 18, no. 34, Article ID 345202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Perelaer, P. J. Smith, D. Mager et al., “Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials,” Journal of Materials Chemistry, vol. 20, no. 39, pp. 8446–8453, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. W.-S. Han, J.-M. Hong, H.-S. Kim, and Y.-W. Song, “Multi-pulsed white light sintering of printed Cu nanoinks,” Nanotechnology, vol. 22, Article ID 395705, 2011.
  37. Z. Lin, J. J. Cai, L. E. Scriven, and H. T. Davis, “Spherical-to-wormlike micelle transition in CTAB solutions,” Journal of Physical Chemistry, vol. 98, no. 23, pp. 5984–5993, 1994. View at Scopus
  38. S. H. Wu and D. H. Chen, “Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions,” Journal of Colloid and Interface Science, vol. 273, no. 1, pp. 165–169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. Accelrys Software Inc., “Discovery Studio Modeling Environment, Release 3.0,” San Diego, Calif, USA, 2011.