About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 802318, 7 pages
http://dx.doi.org/10.1155/2013/802318
Research Article

Visible Light Irradiation-Mediated Drug Elution Activity of Nitrogen-Doped TiO2 Nanotubes

1Department of Dental Biomaterials and Institute of Biomaterial and Implant, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
2Department of Dentistry, College of Dentistry, Wonkwang University, Iksan, Jeonbuk 570-749, Republic of Korea
3Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA

Received 19 October 2012; Revised 23 December 2012; Accepted 24 December 2012

Academic Editor: Fengqiang Sun

Copyright © 2013 Seunghan Oh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Liu and A. Chen, “Coadsorption of horseradish peroxidase with thionine on TiO2 nanotubes for biosensing,” Langmuir, vol. 21, no. 18, pp. 8409–8413, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Paulose, K. Shankar, S. Yoriya et al., “Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length,” The Journal of Physical Chemistry B, vol. 110, pp. 16179–16184, 2006.
  3. H. Zhang, P. Liu, X. Liu et al., “Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications,” Langmuir, vol. 26, no. 13, pp. 11226–11232, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Shankar, G. K. Mor, H. E. Prakasam, O. K. Varghese, and C. A. Grimes, “Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells,” Langmuir, vol. 23, no. 24, pp. 12445–12449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Bigerelle, K. Anselme, B. Noël, I. Ruderman, P. Hardouin, and A. Iost, “Improvement in the morphology of Ti-based surfaces: a new process to increase in vitro human osteoblast response,” Biomaterials, vol. 23, no. 7, pp. 1563–1577, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. B. D. Boyan, T. W. Hummert, D. D. Dean, and Z. Schwartz, “Role of material surfaces in regulating bone and cartilage cell response,” Biomaterials, vol. 17, no. 2, pp. 137–146, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. C. G. Galbraith and M. P. Sheetz, “Forces on adhesive contacts affect cell function,” Current Opinion in Cell Biology, vol. 10, no. 5, pp. 566–571, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. A. L. Linsebigler, G. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results,” Chemical Reviews, vol. 95, no. 3, pp. 735–758, 1995. View at Scopus
  9. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical Reviews, vol. 95, no. 1, pp. 69–96, 1995. View at Scopus
  10. C. S. Rustomji, C. J. Frandsen, S. Jin, and M. J. Tauber, “Dye-sensitized solar cell constructed with titanium mesh and 3-D array of TiO2 nanotubes,” Journal of Physical Chemistry B, vol. 114, no. 45, pp. 14537–14543, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Wang, H. Li, W. Lü et al., “Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs,” Biomaterials, vol. 32, no. 29, pp. 6900–6911, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. T. Sul, “Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of TiO2 nanotubes on microstructured surfaces of blasted, screw-shaped titanium implants,” International Journal of Nanomedicine, vol. 5, no. 1, pp. 87–100, 2010. View at Scopus
  13. L. Peng, A. D. Mendelsohn, T. J. LaTempa, S. Yoriya, C. A. Grimes, and T. A. Desai, “Long-Term small molecule and protein elution from TiO2 nanotubes,” Nano Letters, vol. 9, no. 5, pp. 1932–1936, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Von Wilmowsky, S. Bauer, R. Lutz et al., “In vivo evaluation of anodic TiO2 nanotubes; an experimental study in the pig,” Journal of Biomedical Materials Research—Part B, vol. 89, no. 1, pp. 165–171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Balasundaram, C. Yao, and T. J. Webster, “TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion,” Journal of Biomedical Materials Research—Part A, vol. 84, no. 2, pp. 447–453, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. K. S. Brammer, S. Oh, C. J. Cobb, L. M. Bjursten, H. V. D. Heyde, and S. Jin, “Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface,” Acta Biomaterialia, vol. 5, no. 8, pp. 3215–3223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Oh, K. S. Brammer, Y. S. J. Li et al., “Stem cell fate dictated solely by altered nanotube dimension,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 7, pp. 2130–2135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. K. S. Brammer, S. Oh, J. O. Gallagher, and S. Jin, “Enhanced cellular mobility guided by TiO2 nanotube surfaces,” Nano Letters, vol. 8, no. 3, pp. 786–793, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Park, S. Bauer, P. Schmuki, and K. Von Der Mark, “Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces,” Nano Letters, vol. 9, no. 9, pp. 3157–3164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. L. M. Bjursten, L. Rasmusson, S. Oh, G. C. Smith, K. S. Brammer, and S. Jin, “Titanium dioxide nanotubes enhance bone bonding in vivo,” Journal of Biomedical Materials Research—Part A, vol. 92, no. 3, pp. 1218–1224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Zhang, Z. Zheng, Y. Chen, X. Liu, A. Chen, and Z. Jiang, “in vivo investigation of blood compatibility of titanium oxide films,” Journal of Biomedical Materials Research, vol. 42, pp. 128–133, 1998.
  22. D. I. Axel, W. Kunert, C. Göggelmann et al., “Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery,” Circulation, vol. 96, no. 2, pp. 636–645, 1997. View at Scopus
  23. G. Greenstein and A. Polson, “The role of local drug delivery in the management of periodontal diseases: a comprehensive review,” Journal of Periodontology, vol. 69, no. 5, pp. 507–520, 1998. View at Scopus
  24. C.-C. Hu, T.-C. Hsu, and L.-H. Kao, “One-step cohydrothermal synthesis of nitrogen-doped titanium oxide nanotubes with enhanced visible light photocatalytic activity,” International Journal of Photoenergy, vol. 2012, Article ID 391958, 9 pages, 2012. View at Publisher · View at Google Scholar
  25. S. Li, S. Lin, J. Liao, N. Pan, D. Li, and J. Li, “Nitrogen-doped TiO2 nanotube arrays with enhanced photoelectrochemical property,” International Journal of Photoenergy, vol. 2012, Article ID 794207, 7 pages, 2012. View at Publisher · View at Google Scholar
  26. J. Qian, G. Cui, M. Jing, J. Wang, M. Zhang, and J. Yang, “Hydrothermal synthesis of nitrogen-doped titanium dioxide and evaluation of its visible light photocatalytic activity,” International Journal of Photoenergy, vol. 2012, Article ID 198497, 6 pages, 2012. View at Publisher · View at Google Scholar
  27. Z. Xu and J. Yu, “Visible-light-induced photoelectrochemical behaviors of Fe-modified TiO2 nanotube arrays,” Nanoscale, vol. 3, pp. 3138–3144, 2011.
  28. S. Yeonmi and L. Seonghoon, “Self-organized regular arrays of anodic TiO2 nanotubes,” Nano Letters, vol. 8, no. 10, pp. 3171–3173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. Q. Xiang, J. Yu, W. Wang, and M. Jaroniec, “Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity,” Chemical Communications, vol. 47, no. 24, pp. 6906–6908, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Ananpattarachai, P. Kajitvichyanukul, and S. Seraphin, “Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants,” Journal of Hazardous Materials, vol. 168, no. 1, pp. 253–261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout, and J. L. Gole, “Enhanced nitrogen doping in TiO2 nanoparticles,” Nano Letters, vol. 3, no. 8, pp. 1049–1051, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Cong, J. Zhang, F. Chen, and M. Anpo, “Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity,” Journal of Physical Chemistry C, vol. 111, no. 19, pp. 6976–6982, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. Q. Xiang, J. Yu, and M. Jaroniec, “Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity,” Physical Chemistry Chemical Physics, vol. 13, no. 11, pp. 4853–4861, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Yu, G. Dai, Q. Xiang, and M. Jaroniec, “Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed {001} facets,” Journal of Materials Chemistry, vol. 21, no. 4, pp. 1049–1057, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Sun, Y. Bai, W. Jin, and N. Xu, “Visible-light-driven TiO2 catalysts doped with low-concentration nitrogen species,” Solar Energy Materials and Solar Cells, vol. 92, no. 1, pp. 76–83, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Sakthivel and H. Kisch, “Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide,” ChemPhysChem, vol. 4, no. 5, pp. 487–490, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. Z. Wang, W. Cai, X. Hong, X. Zhao, F. Xu, and C. Cai, “Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources,” Applied Catalysis B, vol. 57, no. 3, pp. 223–231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Zhu, Z. Deng, F. Chen et al., “Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+,” Applied Catalysis B, vol. 62, no. 3-4, pp. 329–335, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. N. C. Saha and H. G. Tompkins, “Titanium nitride oxidation chemistry: an X-Ray photoelectron spectroscopy study,” Journal of Applied Physics, vol. 72, no. 7, pp. 3072–3079, 1992. View at Publisher · View at Google Scholar · View at Scopus