About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 821071, 5 pages
http://dx.doi.org/10.1155/2013/821071
Research Article

The Preparation of Carbon Nanotube/MnO2 Composite Fiber and Its Application to Flexible Micro-Supercapacitor

1Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
2Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China

Received 3 January 2013; Revised 26 January 2013; Accepted 28 January 2013

Academic Editor: Tao Chen

Copyright © 2013 Li Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Y. Chun, Y. Oh, J. Rho et al., “Highly conductive, printable and stretchable composite films of carbon nanotubes and silver,” Nature Nanotechnology, vol. 5, no. 12, pp. 853–857, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Hong and S. Myung, “Nanotube electronics: a flexible approach to mobility,” Nature Nanotechnology, vol. 2, no. 4, pp. 207–208, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Chen, Z. Cai, Z. Yang et al., “Nitrogen-doped carbon nanotube composite fiber with a core-sheath structure for novel electrodes,” Advanced Materials, vol. 23, no. 40, pp. 4620–4625, 2011. View at Publisher · View at Google Scholar
  4. Q. Cao, S. H. Hur, Z. T. Zhu et al., “Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics,” Advanced Materials, vol. 18, no. 3, pp. 304–309, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Nyholm, G. Nyström, A. Mihranyan, and M. Strømme, “Toward flexible polymer and paper-based energy storage devices,” Advanced Materials, vol. 23, no. 33, pp. 3751–3769, 2011. View at Publisher · View at Google Scholar
  6. L. Li, Z. Yang, H. Gao et al., “Vertically aligned and penetrated carbon nanotube/polymer composite film and promising electronic applications,” Advanced Materials, vol. 23, no. 32, pp. 3730–3735, 2011.
  7. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes: The route toward applications,” Science, vol. 297, no. 5582, pp. 787–792, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Peng, “Aligned carbon nanotube/polymer composite films with robust flexibility, high transparency, and excellent conductivity,” Journal of the American Chemical Society, vol. 130, no. 1, pp. 42–43, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Peng, M. Jain, D. E. Peterson, Y. Zhu, and Q. Jia, “Composite carbon nanotube/silica fibers with improved mechanical strengths and electrical conductivities,” Small, vol. 4, no. 11, pp. 1964–1967, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Luo, X. Wang, M. He, X. Li, and H. Chen, “Synthesis of high-quality carbon nanotube arrays without the assistance of water,” Journal of Nanomaterials, vol. 2012, Article ID 542582, 5 pages, 2012. View at Publisher · View at Google Scholar
  11. Y. Luo, Z. Gong, M. He, X. Wang, Z. Tang, and H. Chen, “Fabrication of high-quality carbon nanotube fibers for optoelectronic applications,” Solar Energy Materials and Solar Cells, vol. 97, pp. 78–82, 2012. View at Publisher · View at Google Scholar
  12. H. Peng, M. Jain, Q. Li, D. E. Peterson, Y. Zhu, and Q. Jia, “Vertically aligned pearl-like carbon nanotube arrays for fiber spinning,” Journal of the American Chemical Society, vol. 130, no. 4, pp. 1130–1131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Li, L. Zhang, J. Ren et al., “Intriguing hybrid nanotubes with tunable structures,” Chemical Physics Letters, vol. 516, no. 4–6, pp. 204–207, 2011. View at Publisher · View at Google Scholar
  14. Z. Yang, X. Sun, X. Chen et al., “Dependence of structures and properties of carbon nanotube fibers on heating treatment,” Journal of Materials Chemistry, vol. 21, no. 36, pp. 13772–13775, 2011. View at Publisher · View at Google Scholar
  15. Y. Hou, Y. Cheng, T. Hobson, and J. Liu, “Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes,” Nano Letters, vol. 10, no. 7, pp. 2727–2733, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Toupin, T. Brousse, and D. Bélanger, “Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor,” Chemistry of Materials, vol. 16, no. 16, pp. 3184–3190, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Simon and Y. Gogotsi, “Materials for electrochemical capacitors,” Nature Materials, vol. 7, no. 11, pp. 845–854, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Wang, H. Liu, X. Sun, and I. Zhitomirsky, “Manganese dioxide-carbon nanotube nanocomposites for electrodes of electrochemical supercapacitors,” Scripta Materialia, vol. 61, no. 11, pp. 1079–1082, 2009. View at Publisher · View at Google Scholar · View at Scopus