About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 832710, 9 pages
http://dx.doi.org/10.1155/2013/832710
Research Article

Preparation and Characterization of a Novel Hybrid Hydrogel Composed of Bombyx mori Fibroin and Poly(N-isopropylacrylamide)

Institute of Ecology and Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China

Received 18 September 2012; Accepted 22 November 2012

Academic Editor: Lian Gao

Copyright © 2013 Ting Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Vepari and D. L. Kaplan, “Silk as a biomaterial,” Progress in Polymer Science, vol. 32, no. 8-9, pp. 991–1007, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Z. Zhou, F. Confalonieri, N. Medina et al., “Fine organization of Bombyx mori fibroin heavy chain gene,” Nucleic Acids Research, vol. 28, no. 12, pp. 2413–2419, 2000. View at Scopus
  3. D. P. Tieleman, I. H. Shrivastava, M. R. Ulmschneider, and M. S. P. Sansom, “Silk fibroin: structural implications of a remarkable amino acid sequence,” Proteins, vol. 44, no. 2, pp. 119–122, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Ghosh, S. T. Parker, X. Wang, D. L. Kaplan, and J. A. Lewis, “Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications,” Advanced Functional Materials, vol. 18, no. 13, pp. 1883–1889, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Nazarov, H. J. Jin, and D. L. Kaplan, “Porous 3-D scaffolds from regenerated silk fibroin,” Biomacromolecules, vol. 5, no. 3, pp. 718–726, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Li, H. J. Jin, G. D. Botsaris, and D. L. Kaplan, “Silk apatite composites from electrospun fibers,” Journal of Materials Research, vol. 20, no. 12, pp. 3374–3384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. B. M. Min, G. Lee, S. H. Kim, Y. S. Nam, T. S. Lee, and W. H. Park, “Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro,” Biomaterials, vol. 25, no. 7-8, pp. 1289–1297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. U. J. Kim, J. Park, C. Li, H. J. Jin, R. Valluzzi, and D. L. Kaplan, “Structure and properties of silk hydrogels,” Biomacromolecules, vol. 5, no. 3, pp. 786–792, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Y. Fang, J. P. Chen, Y. L. Leu, and H. Y. Wang, “Characterization and evaluation of silk protein hydrogels for drug delivery,” Chemical and Pharmaceutical Bulletin, vol. 54, no. 2, pp. 156–162, 2006. View at Scopus
  10. A. Matsumoto, J. Chen, A. L. Collette et al., “Mechanisms of silk fibroin sol-gel transitions,” Journal of Physical Chemistry B, vol. 110, no. 43, pp. 21630–21638, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Djabourov, J. P. Lechaire, and F. Gaill, “Structure and rheology of gelatin and collagen gels,” Biorheology, vol. 30, no. 3-4, pp. 191–205, 1993. View at Scopus
  12. S. Zhang, “Fabrication of novel biomaterials through molecular self-assembly,” Nature Biotechnology, vol. 21, no. 10, pp. 1171–1178, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. H. Ayub, M. Arai, and K. Hirabayashi, “Quantitative structural analysis and physical properties of silk fibroin hydrogels,” Polymer, vol. 35, no. 10, pp. 2197–2200, 1994. View at Scopus
  14. M. Li, W. Tao, S. Kuga, and Y. Nishiyama, “Controlling molecular conformation of regenerated wild silk fibroin by aqueous ethanol treatment,” Polymers for Advanced Technologies, vol. 14, no. 10, pp. 694–698, 2003. View at Scopus
  15. H. J. Jin, J. Park, R. Valluzzi, P. Cebe, and D. L. Kaplan, “Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide),” Biomacromolecules, vol. 5, no. 3, pp. 711–717, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. G. D. Kang, J. H. Nahm, J. S. Park, J. Y. Moon, C. S. Cho, and J. H. Yeo, “Effects of poloxamer on the gelation of silk fibroin,” Macromolecular Rapid Communications, vol. 21, no. 11, pp. 788–791, 2000. View at Scopus
  17. X. Wang, J. A. Kluge, G. G. Leisk, and D. L. Kaplan, “Sonication-induced gelation of silk fibroin for cell encapsulation,” Biomaterials, vol. 29, no. 8, pp. 1054–1064, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. Q. Lv, K. Hu, Q. Feng, and F. Cui, “Fibroin/collagen hybrid hydrogels with crosslinking method: preparation, properties, and cytocompatibility,” Journal of Biomedical Materials Research A, vol. 84, no. 1, pp. 198–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Chen, W. Li, W. Zhong, Y. Lu, and T. Yu, “pH sensitivity and ion sensitivity of hydrogels based on complex-forming chitosan/silk fibroin interpenetrating polymer network,” Journal of Applied Polymer Science, vol. 65, no. 11, pp. 2257–2262, 1997. View at Scopus
  20. H. Y. Kweon, S. H. Park, and J. H. Yeo, “Preparation of semi-interpenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) macromer,” Journal of Applied Polymer Science, vol. 80, no. 10, pp. 1848–1853, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. M. K. Yoo, H. Y. Kweon, K. G. Lee, H. C. Lee, and C. S. Cho, “Preparation of semi-interpenetrating polymer networks composed of silk fibroin and poloxamer macromer,” International Journal of Biological Macromolecules, vol. 34, no. 4, pp. 263–270, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. E. S. Gil and S. M. Hudson, “Effect of silk fibroin interpenetrating networks on swelling/deswelling kinetics and rheological properties of poly(N-isopropylacrylamide) hydrogels,” Biomacromolecules, vol. 8, no. 1, pp. 258–264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Li, S. Lu, Z. Wu, K. Tan, N. Minoura, and S. Kuga, “Structure and properties of silk fibroin-poly(vinyl alcohol) gel,” International Journal of Biological Macromolecules, vol. 30, no. 2, pp. 89–94, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. Q. Lv, Q. Feng, K. Hu, and F. Cui, “Three-dimensional fibroin/collagen scaffolds derived from aqueous solution and the use for HepG2 culture,” Polymer, vol. 46, no. 26, pp. 12662–12669, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. E. S. Gil, D. J. Frankowski, R. J. Spontak, and S. M. Hudson, “Swelling behavior and morphological evolution of mixed gelatin/silk fibroin hydrogels,” Biomacromolecules, vol. 6, no. 6, pp. 3079–3087, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Jeong, S. W. Kim, and Y. H. Bae, “Thermosensitive sol-gel reversible hydrogels,” Advanced Drug Delivery Reviews, vol. 54, no. 1, pp. 37–51, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. W. E. Rudzinski, A. M. Dave, U. H. Vaishnav, S. G. Kumbar, A. R. Kulkarni, and T. M. Aminabhavi, “Hydrogels as controlled release devices in agriculture,” Designed Monomers and Polymers, vol. 5, no. 1, pp. 39–65, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. R. C. Mundargi, N. B. Shelke, V. R. Babu, P. Patel, V. Rangaswamy, and T. M. Aminabhavi, “Novel thermo-responsive semi-interpenetrating network microspheres of gellan gum-poly(N-isopropylacrylamide) for controlled release of atenolol,” Journal of Applied Polymer Science, vol. 116, no. 3, pp. 1832–1841, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. K. M. Reddy, V. R. Babu, K. S. V. K. Rao et al., “Temperature sensitive semi-IPN microspheres from sodium alginate and N-isopropylacrylamide for controlled release of 5-fluorouracil,” Journal of Applied Polymer Science, vol. 107, no. 5, pp. 2820–2829, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. K. S. Soppimath, T. M. Aminabhavi, A. M. Dave, S. G. Kumbar, and W. E. Rudzinski, “Stimulus-responsive “smart” hydrogels as novel drug delivery systems,” Drug Development and Industrial Pharmacy, vol. 28, no. 8, pp. 957–974, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. N. B. Shelke, S. V. Kumar, K. M. Mahadevan, B. S. Sherigara, and T. M. Aminabhavi, “Synthesis, characterization, and evaluation of copolymers based on N-isopropylacrylamide and 2-ethoxyethyl methacrylate for the controlled release of felodipine,” Journal of Applied Polymer Science, vol. 110, no. 4, pp. 2211–2217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Z. Zhang, Y. Y. Yang, T. S. Chung, and K. X. Ma, “Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels,” Langmuir, vol. 17, no. 20, pp. 6094–6099, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Miyahara, N. Nagaya, M. Kataoka et al., “Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction,” Nature Medicine, vol. 12, no. 4, pp. 459–465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. S. H. Choi, J. J. Yoon, and T. G. Park, “Galactosylated poly(N-isopropylacrylamide) hydrogel submicrometer particles for specific cellular uptake within hepatocytes,” Journal of Colloid and Interface Science, vol. 251, no. 1, pp. 57–63, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. X. D. Xu, H. Wei, X. Z. Zhang, S. X. Cheng, and R. X. Zhuo, “Fabrication and characterization of a novel composite PNIPAAm hydrogel for controlled drug release,” Journal of Biomedical Materials Research A, vol. 81, no. 2, pp. 418–426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Chang, H. Wei, C. Y. Quan et al., “Fabrication of thermosensitive PCL-PNIPAAm-PCL triblock copolymeric micelles for drug delivery,” Journal of Polymer Science A, vol. 46, no. 9, pp. 3048–3057, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. W. Liu, B. Zhang, W. W. Lu et al., “A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel,” Biomaterials, vol. 25, no. 15, pp. 3005–3012, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. M. W. Tibbitt and K. S. Anseth, “Hydrogels as extracellular matrix mimics for 3D cell culture,” Biotechnology and Bioengineering, vol. 103, no. 4, pp. 655–663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Cheng, L. Shen, and C. Wu, “LLS and FTIR studies on the hysteresis in association and dissociation of poly(N-isopropylacrylamide) chains in water,” Macromolecules, vol. 39, no. 6, pp. 2325–2329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Martínez-Ruvalcaba, E. Chornet, and D. Rodrigue, “Viscoelastic properties of dispersed chitosan/xanthan hydrogels,” Carbohydrate Polymers, vol. 67, no. 4, pp. 586–595, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. H. H. Winter and F. Chambon, “Analysis of linear viscoelasticity of a crosslinking polymer at the gel point,” Journal of Rheology, vol. 30, no. 2, pp. 367–382, 1986. View at Publisher · View at Google Scholar · View at Scopus
  42. E. E. Holly, S. K. Venkataraman, F. Chambon, and H. H. Winter, “Fourier transform mechanical spectroscopy of viscoelastic materials with transient structure,” Journal of Non-Newtonian Fluid Mechanics, vol. 27, no. 1, pp. 17–26, 1988. View at Scopus
  43. S. Y. Kim, D. G. Choi, and S. M. Yang, “Rheological analysis of the gelation behavior of tetraethylorthosilane/vinyltriethoxysilane hybrid solutions,” Korean Journal of Chemical Engineering, vol. 19, no. 1, pp. 190–196, 2002. View at Scopus
  44. B. Ranjbar and P. Gill, “Circular dichroism techniques: biomolecular and nanostructural analyses—a review,” Chemical Biology and Drug Design, vol. 74, no. 2, pp. 101–120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Pei, J. Chen, L. Yang et al., “The effect of pH on the LCST of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylic acid),” Journal of Biomaterials Science, vol. 15, no. 5, pp. 585–594, 2004. View at Publisher · View at Google Scholar · View at Scopus