About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 864374, 11 pages
http://dx.doi.org/10.1155/2013/864374
Research Article

Fabrication of Novel Biodegradable α-Tricalcium Phosphate Cement Set by Chelating Capability of Inositol Phosphate and Its Biocompatibility

1Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
2Kanagawa Academy of Science and Technology (KAST), KSP East 404, 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012, Japan
3Showa Ika Kohgyo Co., Ltd., 8-7 Hanei-nishimachi, Toyohashi 441-8026, Japan
4Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan

Received 8 April 2013; Accepted 8 May 2013

Academic Editor: Eng San Thian

Copyright © 2013 Toshiisa Konishi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Ishikawa, S. Takagi, L. C. Chow, and Y. Ishikawa, “Properties and mechanisms of fast-setting calcium phosphate cements,” Journal of Materials Science, vol. 6, no. 9, pp. 528–533, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. U. Gbureck, J. E. Barralet, K. Spatz, L. M. Grover, and R. Thull, “Ionic modification of calcium phosphate cement viscosity. Part I: hypodermic injection and strength improvement of apatite cement,” Biomaterials, vol. 25, no. 11, pp. 2187–2195, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. E. Barralet, M. Tremayne, K. J. Lilley, and U. Gbureck, “Modification of calcium phosphate cement with α-hydroxy acids and their salts,” Chemistry of Materials, vol. 17, no. 6, pp. 1313–1319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Miyamoto, K. Ishikawa, M. Takechi, et al., “Histological and compositional evaluations of three types of calcium phosphate cements when implanted in subcutaneous tissue immediately after mixing,” Journal of Biomedical Materials Research A, vol. 48, pp. 36–42, 1999.
  5. H. Monma and T. Kanazawa, “The hydration of α-tricalcium phosphate,” Yogyo-Kyokai-Shi, vol. 84, pp. 209–213, 1976.
  6. W. E. Brown and L. C. Chow, “Dental restorative cement pastes,” US Patent No. US4518430, 1985.
  7. D. Apelt, F. Theiss, A. O. El-Warrak et al., “In vivo behavior of three different injectable hydraulic calcium phosphate cements,” Biomaterials, vol. 25, no. 7-8, pp. 1439–1451, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Aizawa, Y. Haruta, and I. Okada, “Development of novel cement processing using hydroxyapatite particles modified with inositol phosphate,” in Archives of BioCeramics Research, vol. 3, pp. 134–138, 2003.
  9. Y. Horiguchi, A. Yoshikawa, K. Oribe, and M. Aizawa, “Fabrication of chelate-setting hydroxyapatite cements from four kinds of commercially-available powder with various shape and crystallinity and their mechanical property,” Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi, vol. 116, no. 1349, pp. 50–55, 2008. View at Scopus
  10. T. Konishi, Z. Zhuang, M. Mizumoto, M. Honda, and M. Aizawa, “Fabrication of chelate-setting cement from hydroxyapatite powder prepared by simultaneously grinding and surface-modifying with sodium inositol hexaphosphate and their material properties,” Journal of the Ceramic Society of Japan, vol. 120, pp. 1–7, 2012.
  11. T. Konishi, Y. Horiguchi, M. Mizumoto, et al., “Novel chelate-setting calcium-phosphate cements fabricated with wet-synthesized hydroxyapatite powder,” Journal of Materials Science, vol. 24, pp. 611–621, 2013.
  12. T. H. Dao, “Polyvalent cation effects on myo-inositol hexakis dihydrogenphosphate enzymatic dephosphorylation in dairy wastewater,” Journal of Environmental Quality, vol. 32, no. 2, pp. 694–701, 2003. View at Scopus
  13. C. J. Martin and W. J. Evans, “Phytic acid-metal ion interactions. II. The effect of pH on Ca(II) binding,” Journal of Inorganic Biochemistry, pp. 2717–2730, 1986.
  14. S. Takahashi, T. Konishi, K. Nishiyama et al., “Fabrication of novel bioresorbable β-tricalcium phosphate cement on the basis of chelate-setting mechanism of inositol phosphate and its evaluation,” Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan, vol. 119, no. 1385, pp. 35–42, 2011. View at Scopus
  15. T. Konishi, S. Takahashi, M. Mizumoto, M. Honda, K. Oribe, and M. Aizawa, “Effect of the addition of various polysaccharides on the material properties and cytotoxicity of chelate-setting β-tricalcium phosphate cement,” Phosphorus Research Bulletin, vol. 26, pp. 59–64, 2012.
  16. T. Konishi, S. Takahashi, and Z. Zetal, “Biodegradable β-tricalcium phosphate cement with anti-washout property based on chelate-setting mechanism of inositol phosphate,” Journal of Materials Science, 2013. View at Publisher · View at Google Scholar
  17. F. H. Lin, C. J. Liao, K. S. Chen, J. S. Sun, and C. P. Lin, “Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water,” Biomaterials, vol. 22, no. 22, pp. 2981–2992, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Ducheyne, S. Radin, and L. King, “The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution,” Journal of Biomedical Materials Research, vol. 27, no. 1, pp. 25–34, 1993. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Yamada, M. Shiota, Y. Yamashita, and S. Kasugai, “Histological and histomorphometrical comparative study of the degradation and osteoconductive characteristics of α- and β-tricalcium phosphate in block grafts,” Journal of Biomedical Materials Research B, vol. 82, no. 1, pp. 139–148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Li, X. Zhang, and K. de Groot, “Hydrolysis and phase transition of alpha-tricalcium phosphate,” Biomaterials, vol. 18, no. 10, pp. 737–741, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. K. S. TenHuisen and P. W. Brown, “Formation of calcium-deficient hydroxyapatite from α-tricalcium phosphate,” Biomaterials, vol. 19, no. 23, pp. 2209–2217, 1998. View at Scopus
  22. M. P. Ginebra, E. Fernandez, F. C. M. Driessens et al., “The effects of temperature on the behaviour of an apatitic calcium phosphate cement,” Journal of Materials Science, vol. 6, no. 12, pp. 857–860, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. U. Gbureck, J. E. Barralet, L. Radu, H. G. Klinger, and R. Thull, “Amorphous α-tricalcium phosphate: preparation and aqueous setting reaction,” Journal of the American Ceramic Society, vol. 87, no. 6, pp. 1126–1132, 2004. View at Scopus
  24. C. L. Camiré, P. Nevsten, L. Lidgren, and I. McCarthy, “The effect of crystallinity on strength development ofα-TCP bone substitutes,” Journal of Biomedical Materials Research B, vol. 79, pp. 159–165, 2006.
  25. C. L. Camiré, U. Gbureck, W. Hirsiger, and M. Bohner, “Correlating crystallinity and reactivity in an α-tricalcium phosphate,” Biomaterials, vol. 26, no. 16, pp. 2787–2794, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Bohner, A. K. Malsy, C. L. Camiré, and U. Gbureck, “Combining particle size distribution and isothermal calorimetry data to determine the reaction kinetics of α-tricalcium phosphate-water mixtures,” Acta Biomaterialia, vol. 2, no. 3, pp. 343–348, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. T. J. Brunner, R. N. Grass, M. Bohner, and W. J. Stark, “Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction,” Journal of Materials Chemistry, vol. 17, no. 38, pp. 4072–4078, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. C. J. Martin and W. J. Evans, “Phytic acid-metal ion interactions. II. The effect of pH on Ca(II) binding,” Journal of Inorganic Biochemistry, vol. 27, pp. 17–30, 1986.
  29. B. M. Luttrell, “The biological relevance of the binding of calcium ions by inositol phosphates,” Journal of Biological Chemistry, vol. 268, no. 3, pp. 1521–1524, 1993. View at Scopus
  30. K. Ikami, M. Iwaku, and H. Ozawa, “An ultrastructural study of the process of hard tissue formation in amputated dental pulp dressed with α-tricalcium phosphate,” Archives of Histology and Cytology, vol. 53, no. 2, pp. 227–243, 1990. View at Scopus
  31. H. Oonishi, L. L. Hench, J. Wilson et al., “Comparative bone growth behavior in granules of bioceramic materials of various sizes,” Journal of Biomedical Materials Research, vol. 44, no. 1, pp. 31–43, 1999. View at Scopus
  32. M. Kitamura, C. Ohtsuki, H. Iwasaki, S. I. Ogata, M. Tanihara, and T. Miyazaki, “The controlled resorption of porous α-tricalcium phosphate using a hydroxypropylcellulose coating,” Journal of Materials Science, vol. 15, no. 10, pp. 1153–1158, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Kihara, M. Shiota, Y. Yamashita, and S. Kasugai, “Biodegradation process of α-TCP particles and new bone formation in a rabbit cranial defect model,” Journal of Biomedical Materials Research B, vol. 79, no. 2, pp. 284–291, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Nyan, D. Sato, H. Kihara, T. MacHida, K. Ohya, and S. Kasugai, “Effects of the combination with α-tricalcium phosphate and simvastatin on bone regeneration,” Clinical Oral Implants Research, vol. 20, no. 3, pp. 280–287, 2009. View at Publisher · View at Google Scholar · View at Scopus