About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 870254, 4 pages
http://dx.doi.org/10.1155/2013/870254
Research Article

A Flexible Blue Light-Emitting Diode Based on ZnO Nanowire/Polyaniline Heterojunctions

1School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 20093, China
2School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200235, China

Received 14 June 2013; Accepted 5 September 2013

Academic Editor: Wen Lei

Copyright © 2013 Y. Y. Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Chu, G. Wang, W. Zhou et al., “Electrically pumped waveguide lasing from ZnO nanowires,” Nature Nanotechnology, vol. 6, no. 8, pp. 506–510, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Lai, W. Kim, and P. D. Yang, “Vertical nanowire array-based light emitting diodes,” Nano Research, vol. 1, no. 2, pp. 123–128, 2008. View at Publisher · View at Google Scholar
  3. X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Letters, vol. 8, no. 4, pp. 1219–1223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Könenkamp, R. C. Word, and M. Godinez, “Ultraviolet electroluminescence from ZnO/polymer heterojunction light-emitting diodes,” Nano Letters, vol. 5, no. 10, pp. 2005–2008, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nature Materials, vol. 4, no. 6, pp. 455–459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. Ü. Ozgur, D. Hofstetter, and H. Morkoç, “ZnO devices and applications: a review of current status and future prospects,” Proceedings of the IEEE, vol. 98, no. 7, pp. 1255–1268, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Zaman, A. Zainelabdin, G. Amin, O. Nur, and M. Willander, “Influence of the polymer concentration on the electroluminescence of ZnO nanorod/polymer hybrid light emitting diodes,” Journal of Applied Physics, vol. 112, no. 6, Article ID 064324, 6 pages, 2012. View at Publisher · View at Google Scholar
  8. J. H. Jun, K. Cho, J. Yun, K. S. Suh, T. Kim, and S. Kim, “Enhancement of electrical characteristics of electrospun Polyaniline nanofibers by embedding the nanofibers with Ga-doped ZnO nanoparticles,” Organic Electronics, vol. 9, no. 4, pp. 445–451, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Kim, S. Park, and N. F. Scherer, “Ultrafast dynamics of polarons in conductive polyaniline: comparison of primary and secondary doped forms,” Journal of Physical Chemistry B, vol. 112, no. 49, pp. 15576–15587, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. D. P. Halliday, J. W. Gray, P. N. Adams, and A. P. Monkman, “Electrical and optical properties of a polymer semiconductor interface,” Synthetic Metals, vol. 102, no. 1-3, pp. 877–878, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. S. W. Lee, D. O. Cho, G. Panin, and T. W. Kang, “Vertical ZnO nanowires/Si contact light emitting diode,” Applied Physics Letters, vol. 98, Article ID 093110, 3 pages, 2011. View at Publisher · View at Google Scholar