About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 891365, 6 pages
http://dx.doi.org/10.1155/2013/891365
Research Article

Annealing Effects of Sputtered Cu2O Nanocolumns on ZnO-Coated Glass Substrate for Solar Cell Applications

1Department of Electro-Optical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao E. Road, Taipei 106, Taiwan
2Materials & Electro-Optics Research Division, Chung-Shan Institute of Science and Technology, P.O. Box No. 90008-8-6, Lung Tan, Taoyuan 325, Taiwan

Received 19 December 2012; Revised 5 February 2013; Accepted 13 February 2013

Academic Editor: Sanqing Huang

Copyright © 2013 Lung-Chien Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. C. Olsen, F. W. Addis, and W. Miller, “Experimental and theoretical studies of Cu2O solar cells,” Solar Cells, vol. 7, no. 3, pp. 247–279, 1982. View at Scopus
  2. B. P. Rai, “Cu2O solar cells: a review,” Solar Cells, vol. 25, no. 3, pp. 265–272, 1988. View at Scopus
  3. A. A. Berezin and F. L. Weichman, “Photovoltaic effect in cuprous oxide-copper junctions in relation to the optical absorption spectrum of cuprous oxide,” Solid State Communications, vol. 37, no. 2, pp. 157–160, 1981. View at Scopus
  4. M. Nolan and S. D. Elliott, “The p-type conduction mechanism in Cu2O: a first principles study,” Physical Chemistry Chemical Physics, vol. 8, no. 45, pp. 5350–5358, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Sieberer, J. Redinger, and P. Mohn, “Electronic and magnetic structure of cuprous oxide Cu2 O doped with Mn, Fe, Co, and Ni: a density-functional theory study,” Physical Review B, vol. 75, no. 3, Article ID 035203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Cui and U. J. Gibson, “A simple two-step electrodeposition of Cu2O/ZnO Nanopillar solar cells,” Journal of Physical Chemistry C, vol. 114, no. 14, pp. 6408–6412, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Minami, T. Miyata, K. Ihara, Y. Minamino, and S. Tsukada, “Effect of ZnO film deposition methods on the photovoltaic properties of ZnO-Cu2O heterojunction devices,” Thin Solid Films, vol. 494, no. 1-2, pp. 47–52, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. C. C. Chen, L. C. Chen, and Y. H. Lee, “Fabrication and optoelectrical properties of IZO/Cu2O heterostructure solar cells by thermal oxidation,” Advances in Condensed Matter Physics, vol. 2012, Article ID 129139, 5 pages, 2012. View at Publisher · View at Google Scholar
  9. W. Septina, S. Ikeda, M. A. Khan et al., “Potentiostatic electrodeposition of cuprous oxide thin films for photovoltaic applications,” Electrochimica Acta, vol. 56, no. 13, pp. 4882–4888, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Wang, R. Li, and D. Fan, “Nanostructured Al-ZnO/CdSe/Cu2O ETA solar cells on Al-ZnO film/quartz glass templates,” Nanoscale Research Letters, vol. 6, article 614, 2011. View at Publisher · View at Google Scholar
  11. L. M. Wong, S. Y. Chiam, J. Q. Huang, S. J. Wang, J. S. Pan, and W. K. Chim, “Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells,” Journal of Applied Physics, vol. 108, no. 3, Article ID 033702, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Ishizuka, S. Kato, T. Maruyama, and K. Akimoto, “Nitrogen doping into Cu2O thin films deposited by reactive radio-frequency magnetron sputtering,” Japanese Journal of Applied Physics, vol. 40, no. 4, pp. 2765–2768, 2001. View at Scopus
  13. S. Jeong and E. S. Aydil, “Heteroepitaxial growth of Cu2O thin film on ZnO by metal organic chemical vapor deposition,” Journal of Crystal Growth, vol. 311, no. 17, pp. 4188–4192, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Nakaoka and K. Ogura, “Electrochemical preparation of p-type cupric and cuprous oxides on platinum and gold substrates from copper(II) solutions with various amino acids,” Journal of the Electrochemical Society, vol. 149, no. 11, pp. C579–C585, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. A. K. Mukhopadhyay, A. K. Chakraborty, A. P. Chatterjee, and S. K. Lahiri, “Galvanostatic deposition and electrical characterization of cuprous oxide thin films,” Thin Solid Films, vol. 209, no. 1, pp. 92–96, 1992. View at Scopus
  16. S. Joseph and P. V. Kamath, “Electrochemical deposition of Cu2O on stainless steel substrates: promotion and suppression of oriented crystallization,” Solid State Sciences, vol. 10, no. 9, pp. 1215–1221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Fujiwara, T. Nakaue, and M. Yoshimura, “Direct fabrication and patterning of Cu2O film by local electrodeposition method,” Solid State Ionics, vol. 175, no. 1–4, pp. 541–544, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Zhang, H. Li, Y. Ni, J. Li, K. Liao, and G. Zhao, “Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing,” Electrochemistry Communications, vol. 11, no. 4, pp. 812–815, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. C. H. Kuo and M. H. Huang, “Fabrication of truncated rhombic dodecahedral Cu2O nanocages and nanoframes by particle aggregation and acidic etching,” Journal of the American Chemical Society, vol. 130, no. 38, pp. 12815–12820, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Jimenez-Cadena, E. Comini, M. Ferroni, and G. Sberveglieri, “Synthesis of Cu2O bi-pyramids by reduction of Cu(OH)2 in solution,” Materials Letters, vol. 64, no. 3, pp. 469–471, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate,” Applied Physics Letters, vol. 88, no. 16, Article ID 163502, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Jeong and E. S. Aydil, “Structural and electrical properties of Cu2O thin films deposited on ZnO by metal organic chemical vapor deposition,” Journal of Vacuum Science and Technology A, vol. 28, no. 6, pp. 1338–1343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. B. S. Li, K. Akimoto, and A. Shen, “Growth of Cu2O thin films with high hole mobility by introducing a low-temperature buffer layer,” Journal of Crystal Growth, vol. 311, no. 4, pp. 1102–1105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Ishizuka, T. Maruyama, and K. Akimoto, “Thin-film deposition of Cu2O by reactive radio-frequency magnetron sputtering,” Japanese Journal of Applied Physics, vol. 39, no. 8A, pp. L786–L788, 2000. View at Scopus
  25. J. H. Hsieh, P. W. Kuo, K. C. Peng, S. J. Liu, J. D. Hsueh, and S. C. Chang, “Opto-electronic properties of sputter-deposited Cu2O films treated with rapid thermal annealing,” Thin Solid Films, vol. 516, no. 16, pp. 5449–5453, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Figueiredo, E. Elangovan, G. Gonçalves et al., “Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature,” Physica Status Solidi (A), vol. 206, no. 9, pp. 2143–2148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Hussain, C. Cao, G. Nabi, W. S. Khan, Z. Usman, and T. Mahmood, “Effect of electrodeposition and annealing of ZnO on optical and photovoltaic properties of the p-Cu2O/n-ZnO solar cells,” Electrochimica Acta, vol. 56, no. 24, pp. 8342–8346, 2011. View at Publisher · View at Google Scholar