About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2013 (2013), Article ID 902538, 7 pages
http://dx.doi.org/10.1155/2013/902538
Review Article

Review on the Synthesis and Applications of Nanomaterials

1College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
2Center of Analysis and Testing, Nanyang Normal University, Nanyang, Henan 473061, China

Received 17 January 2013; Accepted 16 February 2013

Academic Editor: Jianmin Ma

Copyright © 2013 Xiaodi Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Geng, D. Lu, J. Zhu, and H. Chen, “Antimony(III)-doped PbWO4 crystals with enhanced photoluminescence via a shape-controlled sonochemical route,” The Journal of Physical Chemistry B, vol. 110, no. 28, pp. 13777–13785, 2006. View at Publisher · View at Google Scholar
  2. J. M. Honig and J. Spalek, “Electronic properties of NiS2-x Sex single crystals:  from magnetic mott−hubbard insulators to normal metals,” Chemistry of Materials, vol. 10, no. 10, pp. 2910–2929, 1998. View at Publisher · View at Google Scholar
  3. C. N. R. Rao, S. R. C. Vivekchand, K. Biswasa, and A. Govindaraja, “Synthesis of inorganic nanomaterials,” Dalton Transactions, no. 34, pp. 3728–3749, 2007. View at Publisher · View at Google Scholar
  4. M. Zhu and G. Diao, “Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange,” The Journal of Physical Chemistry C, vol. 115, no. 39, pp. 18923–18934, 2011. View at Publisher · View at Google Scholar
  5. Y. L. Hou, J. F. Yu, and S. Gao, “Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles,” Journal of Materials Chemistry, vol. 13, no. 8, pp. 1983–1987, 2003. View at Publisher · View at Google Scholar
  6. X. Li, D. Liu, S. Song, X. Wang, X. Ge, and H. Zhang, “Rhombic dodecahedral Fe3O4: ionic liquid-modulated and microwave-assisted synthesis and their magnetic properties,” CrystEngComm, vol. 13, no. 20, pp. 6017–6020, 2011. View at Publisher · View at Google Scholar
  7. S. Barth, S. Estrade, F. Hernandez-Ramirez et al., “Studies on surface facets and chemical composition of vapor grown one-dimensional magnetite nanostructures,” Crystal Growth & Design, vol. 9, no. 2, pp. 1077–1081, 2009. View at Publisher · View at Google Scholar
  8. J. Lu, X. L. Jiao, D. R. Chen, and W. Li, “Solvothermal synthesis and characterization of Fe3O4 and γ-Fe2O3 nanoplates,” The Journal of Physical Chemistry C, vol. 113, no. 10, pp. 4012–4017, 2009. View at Publisher · View at Google Scholar
  9. Z. Q. Liu, D. H. Zhang, S. Han et al., “Single crystalline magnetite nanotubes,” Journal of the American Chemical Society, vol. 127, no. 1, pp. 6–7, 2005. View at Publisher · View at Google Scholar
  10. J. Gong, S. Li, D. Zhang, X. Zhang, C. Liu, and Z. Tong, “High quality self-assembly magnetite (Fe3O4) chain-like core-shell nanowires with luminescence synthesized by a facile one-pot hydrothermal process,” Chemical Communications, vol. 46, no. 20, pp. 3514–3516, 2010. View at Publisher · View at Google Scholar
  11. F. H. Chen, L. M. Zhang, Q. T. Chen, Y. Zhang, and Z. J. Zhang, “Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG-functionalized porous silica shell,” Chemical Communications, vol. 46, no. 45, pp. 8633–8635, 2010. View at Publisher · View at Google Scholar
  12. T. Fried, G. Shemer, and G. Markovich, “Ordered two-dimensional arrays of ferrite nanoparticles,” Advanced Materials, vol. 13, no. 15, p. 1158, 2001.
  13. Y. Tian, B. Yu, X. Li, and K. Li, “Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometre as potential MRI contrast agents,” Journal of Materials Chemistry, vol. 21, no. 8, pp. 2476–2481, 2011.
  14. C. Chen, P. Gunawan, and R. Xu, “Self-assembled Fe3O4-layered double hydroxide colloidal nanohybrids with excellent performance for treatment of organic dyes in water,” Journal of Materials Chemistry, vol. 21, no. 4, pp. 1218–1225, 2011. View at Publisher · View at Google Scholar
  15. Y. Zeng, R. Hao, B. G. Xing, Y. L. Hou, and Z. C. Xu, “One-pot synthesis of Fe3O4 nanoprisms with controlled electrochemical properties,” Chemical Communications, vol. 46, no. 22, pp. 3920–3922, 2010. View at Publisher · View at Google Scholar
  16. C. Yang, J. Wu, and Y. Hou, “Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications,” Chemical Communications, vol. 47, no. 18, pp. 5130–5141, 2011. View at Publisher · View at Google Scholar
  17. S. M. Lee, S. N. Cho, and J. Cheon, “Anisotropic shape control of colloidal inorganic nanocrystals,” Advanced Materials, vol. 15, no. 5, pp. 441–444, 2003. View at Publisher · View at Google Scholar
  18. J. Mazo-Zuluaga, J. Restrepo, and J. Mejía-López, “Surface anisotropy of a Fe3O4 nanoparticle: a simulation approach,” Physica B, vol. 398, no. 2, pp. 187–190, 2007. View at Publisher · View at Google Scholar
  19. L. H. Zhang, J. J. Wu, H. B. Liao, Y. L. Hou, and S. Gao, “Octahedral Fe3O4 nanoparticles and their assembled structures,” Chemical Communications, no. 29, pp. 4378–4380, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Huang, W. Chen, W. Zhao, Y. Li, X. Li, and C. Chen, “One-dimensional chainlike arrays of Fe3O4 hollow nanospheres synthesized by aging iron nanoparticles in aqueous solution,” The Journal of Physical Chemistry C, vol. 113, no. 28, pp. 12067–12071, 2009. View at Publisher · View at Google Scholar
  21. Y. Wang, Q. Zhu, and L. Tao, “Fabrication and growth mechanism of hierarchical porous Fe3O4 hollow sub-microspheres and their magnetic properties,” CrystEngComm, vol. 13, no. 14, pp. 4652–4657, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Han, Y. Chen, and Y. Wei, “Hierarchical flower-like Fe3O4 and γ–Fe2O3 nanostructures: synthesis, growth mechanism and photocatalytic properties,” CrystEngComm, vol. 14, pp. 4692–4698, 2012. View at Publisher · View at Google Scholar
  23. W. Zhang, X. Wu, J. Hu, Y. Guo, and L. Wan, “Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries,” Advanced Functional Materials, vol. 18, no. 24, pp. 3941–3946, 2008. View at Publisher · View at Google Scholar
  24. Y. Lalatonne, J. Richardi, and M. P. Pileni, “Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals,” Nature Materials, vol. 3, no. 2, pp. 121–125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Si, A. Kotal, T. K. Mandal, S. Giri, H. Nakamura, and T. Kohara, “Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes,” Chemistry of Materials, vol. 16, no. 18, pp. 3489–3496, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Sun and H. Zeng, “Size-controlled synthesis of magnetite nanoparticles,” Journal of the American Chemical Society, vol. 124, no. 28, pp. 8204–8205, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Gao, P. Huang, Y. Zhang, K. Wang, W. Qin, and D. Cui, “Gram scale synthesis of superparamagnetic Fe3O4 nanoparticles and fluid via a facile solvothermal route,” CrystEngComm, vol. 13, no. 6, pp. 1782–1785, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Thiessen, A. Dubavik, V. Lesnyak, N. Gaponik, A. Eychmüller, and T. Wolff, “Amphiphilic and magnetic behavior of Fe3O4 nanocrystals,” Physical Chemistry Chemical Physics, vol. 12, no. 9, pp. 2063–2066, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Ghosh, L. Pradhan, Y. P. Devi et al., “Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia,” Journal of Materials Chemistry, vol. 21, no. 35, pp. 13388–13398, 2011. View at Publisher · View at Google Scholar
  30. T. Yoon, C. Chae, Y. Sun, X. Zhao, H. H. Kung, and J. K. Lee, “Bottom-up in situ formation of Fe3O4 nanocrystals in a porous carbon foam for lithium-ion battery anodes,” Journal of Materials Chemistry, vol. 21, no. 43, pp. 17325–17330, 2011. View at Publisher · View at Google Scholar
  31. J. Park, K. J. An, Y. S. Hwang et al., “Ultra-large-scale syntheses of monodisperse nanocrystals,” Nature Materials, vol. 3, no. 12, pp. 891–895, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Lee, J. Lee, C. J. Bae et al., “Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions,” Advanced Functional Materials, vol. 15, no. 3, pp. 503–509, 2005. View at Publisher · View at Google Scholar
  33. L. J. Zhao, H. J. Zhang, Y. Xing et al., “Morphology-controlled synthesis of magnetites with nanoporous structures and excellent magnetic properties,” Chemistry of Materials, vol. 20, no. 1, pp. 198–204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. H. P. Qi, Q. W. Chen, M. S. Wang, M. H. Wen, and J. Xiong, “Study of self-assembly of octahedral magnetite under an external magnetic field,” The Journal of Physical Chemistry C, vol. 113, no. 40, pp. 17301–17305, 2009. View at Publisher · View at Google Scholar
  35. D. Kim, N. Lee, M. Park, B. H. Kim, K. An, and T. Hyeon, “Synthesis of uniform ferrimagnetic magnetite nanocubes,” Journal of the American Chemical Society, vol. 131, no. 2, pp. 454–455, 2009. View at Publisher · View at Google Scholar
  36. H. L. Ding, Y. X. Zhang, S. Wang, J. M. Xu, S. C. Xu, and G. H. Li, “Fe3O4@SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses,” Chemistry of Materials, vol. 24, no. 23, pp. 4572–4580, 2012. View at Publisher · View at Google Scholar
  37. H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Advanced Materials, vol. 14, no. 2, pp. 158–160, 2002.
  38. C. Burda, X. B. Chen, and R. Narayanan, “Chemistry and properties of nanocrystals of different shapes,” Chemical Reviews, vol. 105, no. 4, pp. 1025–1102, 2005. View at Publisher · View at Google Scholar
  39. B. Wiley, Y. Sun, B. Mayers, and Y. Xia, “Shape-controlled synthesis of metal nanostructures: the case of silver,” Chemistry, vol. 11, no. 2, pp. 454–463, 2005. View at Publisher · View at Google Scholar
  40. X. Liu, J. Ma, P. Peng, and W. Zheng, “Hydrothermal synthesis of cubic MnSe2 and octahedral α-MnSe microcrystals,” Journal of Crystal Growth, vol. 311, no. 5, pp. 1359–1363, 2009. View at Publisher · View at Google Scholar
  41. S. O. Hwang, C. H. Kim, Y. Myung et al., “Synthesis of vertically aligned manganese-doped Fe3O4 nanowire arrays and their excellent room-temperature gas sensing ability,” The Journal of Physical Chemistry C, vol. 112, no. 36, pp. 13911–13916, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. W. Wu, X. Xiao, S. Zhang et al., “Large-scale and controlled synthesis of iron oxide magnetic short nanotubes: shape evolution, growth mechanism, and magnetic properties,” The Journal of Physical Chemistry C, vol. 114, no. 39, pp. 16092–16103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Q. Hu, Y. Bando, Z. W. Liu, D. Golberg, and T. Sekiguchi, “Synthesis of crystalline silicon tubular nanostructures with ZnS nanowires as removable templates,” Angewandte Chemie, vol. 43, no. 1, pp. 63–66, 2004. View at Publisher · View at Google Scholar
  44. B. Geng, F. Zhan, H. Jiang, Y. Guo, and Z. Xing, “Egg albumin as a nanoreactor for growing single-crystalline Fe3O4 nanotubes with high yields,” Chemical Communications, no. 44, pp. 5773–5775, 2008. View at Publisher · View at Google Scholar
  45. Z. Huang, Y. Zhang, and F. Tang, “Solution-phase synthesis of single-crystalline magnetic nanowires with high aspect ratio and uniformity,” Chemical Communications, no. 3, pp. 342–344, 2005. View at Publisher · View at Google Scholar
  46. Z. Xiao, Y. Xia, Z. Ren et al., “Facile synthesis of single-crystalline mesoporous α-Fe2O3 and Fe3O4 nanorods as anode materials for lithium-ion batteries,” Journal of Materials Chemistry, vol. 22, no. 38, pp. 20566–20573, 2012. View at Publisher · View at Google Scholar
  47. S. Mathur, S. Barth, U. Werner, F. Hernandez-Ramirez, and A. Romano-Rodriguez, “Chemical vapor growth of one-dimensional magnetite nanostructures,” Advanced Materials, vol. 20, no. 8, pp. 1550–1554, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. L. Chueh, M. W. Lai, J. Q. Liang, L. J. Chou, and Z. L. Wang, “Systematic study of the growth of aligned arrays of α-Fe2O3 and Fe3O4 nanowires by a vapor-solid process,” Advanced Functional Materials, vol. 16, no. 17, pp. 2243–2251, 2006. View at Publisher · View at Google Scholar
  49. C. J. Jia, L. D. Sun, F. Luo et al., “Large-scale synthesis of single-crystalline iron oxide magnetic nanorings,” Journal of the American Chemical Society, vol. 130, no. 50, pp. 16968–16977, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. K. C. Chin, G. L. Chong, C. K. Poh et al., “Large-scale synthesis of Fe3O4 nanosheets at low temperature,” The Journal of Physical Chemistry C, vol. 111, no. 26, pp. 9136–9141, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. X. Li, Z. Si, Y. Lei et al., “Direct hydrothermal synthesis of single-crystalline triangular Fe3O4 nanoprisms,” CrystEngComm, vol. 12, no. 7, pp. 2060–2063, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Kim, N. Lee, M. Park, B. H. Kim, K. An, and T. Hyeon, “Synthesis of uniform ferrimagnetic magnetite nanocubes,” Journal of the American Chemical Society, vol. 131, no. 2, pp. 454–455, 2009. View at Publisher · View at Google Scholar
  53. V. Polshettiwar, B. Baruwati, and R. S. Varma, “Self-assembly of metal oxides into three-dimensional nanostructures: synthesis and application in catalysis,” ACS Nano, vol. 3, no. 3, pp. 728–736, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Zhang, L. Sun, Y. Fu et al., “The shape anisotropy in the magnetic field-assisted self-assembly chain-like structure of magnetite,” The Journal of Physical Chemistry C, vol. 113, no. 19, pp. 8152–8157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. L. S. Zhong, J. S. Hu, H. P. Liang, A. M. Cao, W. G. Song, and L. J. Wan, “Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment,” Advanced Materials, vol. 18, no. 18, pp. 2426–2431, 2006. View at Publisher · View at Google Scholar
  56. X. Li, Z. Si, Y. Lei et al., “Hierarchically structured Fe3O4 microspheres: morphology control and their application in wastewater treatment,” CrystEngComm, vol. 13, no. 2, pp. 642–648, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. Q. Gao, A. Zhao, Z. Gan et al., “Facile fabrication and growth mechanism of 3D flower-like Fe3O4 nanostructures and their application as SERS substrates,” CrystEngComm, vol. 14, no. 14, pp. 4834–4842, 2012. View at Publisher · View at Google Scholar
  58. Y. Lv, H. Wang, X. Wang, and J. Bai, “Synthesis, characterization and growing mechanism of monodisperse Fe3O4 microspheres,” Journal of Crystal Growth, vol. 311, no. 13, pp. 3445–3450, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Chen, H. Xia, L. Lu, and J. Xue, “Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries,” Journal of Materials Chemistry, vol. 22, no. 11, pp. 5006–5012, 2012. View at Publisher · View at Google Scholar
  60. W. Dong, X. Li, L. Shang, Y. Zheng, G. Wang, and C. Li, “Controlled synthesis and self-assembly of dendrite patterns of Fe3O4 nanoparticles,” Nanotechnology, vol. 20, no. 3, Article ID 035601, 2009. View at Publisher · View at Google Scholar
  61. S. Yuan, J. Li, L. Yang, L. Su, L. Liu, and Z. Zhou, “Preparation and lithium storage performances of mesoporous Fe3O4@C microcapsules,” ACS Applied Materials & Interfaces, vol. 3, no. 3, pp. 705–709, 2011. View at Publisher · View at Google Scholar
  62. O. Delmer, P. Balaya, L. Kienle, and J. Maier, “Enhanced potential of amorphous electrode materials: case study of RuO2,” Advanced Materials, vol. 20, no. 3, pp. 501–505, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. L. Li, T. Wang, L. Zhang, Z. Su, C. Wang, and R. Wang, “Selected-control synthesis of monodisperse Fe3O3@C core-shell spheres, chains, and rings as high-performance anode materials for lithium-Ion batteries,” Chemistry, vol. 18, no. 36, pp. 11417–11422, 2012. View at Publisher · View at Google Scholar
  64. M. Latorre-Sanchez, A. Primo, and H. Garcia, “Green synthesis of Fe3O4 nanoparticles embedded in a porous carbon matrix and its use as anode material in Li-ion batteries,” Journal of Materials Chemistry, vol. 22, no. 40, pp. 21373–21375, 2012. View at Publisher · View at Google Scholar
  65. Y. Piao, H. S. Kim, Y. E. Sung, and T. Hyeon, “Facile scalable synthesis of magnetite nanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries,” Chemical Communications, vol. 46, pp. 118–120, 2010. View at Publisher · View at Google Scholar
  66. S. K. Behera, “Enhanced rate performance and cyclic stability of Fe3O4-graphene nanocomposites for Li ion battery anodes,” Chemical Communications, vol. 47, no. 37, pp. 10371–10373, 2011. View at Publisher · View at Google Scholar
  67. G. Liu, Q. Deng, H. Wang et al., “Synthesis and characterization of nanostructured Fe3O4 micron-spheres and their application in removing toxic Cr ions from polluted water,” Chemistry, vol. 18, no. 42, pp. 13418–13426, 2012. View at Publisher · View at Google Scholar
  68. J. Cheng, S. M. Yu, and P. Zuo, “Horseradish peroxidase immobilized on aluminum-pillared interlayered clay for the catalytic oxidation of phenolic wastewater,” Water Research, vol. 40, no. 2, pp. 283–290, 2006. View at Publisher · View at Google Scholar
  69. Y. Si, T. Ren, B. Ding, J. Yu, and G. Sun, “Synthesis of mesoporous magnetic Fe3O4@carbon nanofibers utilizing in situ polymerized polybenzoxazine for water purification,” Journal of Materials Chemistry, vol. 22, no. 11, pp. 4619–4622, 2012. View at Publisher · View at Google Scholar
  70. G. Xie, P. Xi, H. Liu et al., “A facile chemical method to produce superparamagnetic graphene oxide-Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution,” Journal of Materials Chemistry, vol. 22, no. 3, pp. 1033–1039, 2012. View at Publisher · View at Google Scholar
  71. G. Kang, H. Son, J. M. Lim et al., “Functionalized Fe3O4 nanoparticles for detecting zinc ions in living cells and their cytotoxicity,” Chemistry, vol. 18, no. 19, pp. 5843–5847, 2012. View at Publisher · View at Google Scholar
  72. J. L. Mietta, M. M. Ruiz, P. S. Antonel et al., “Anisotropic magnetoresistance and piezoresistivity in structured Fe3O4-silver particles in PDMS elastomers at room temperature,” Langmuir, vol. 28, no. 17, pp. 6985–6996, 2012. View at Publisher · View at Google Scholar
  73. G. Gao, K. Wang, P. Huang et al., “Superparamagnetic Fe3O4-Ag hybrid nanocrystals as a potential contrast agent for CT imaging,” CrystEngComm, vol. 14, no. 22, pp. 7556–7559, 2012. View at Publisher · View at Google Scholar
  74. Z. S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, and K. Müllen, “3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction,” Journal of the American Chemical Society, vol. 134, no. 22, pp. 9082–9085, 2012. View at Publisher · View at Google Scholar
  75. S. Chen, R. Si, E. Taylor, J. Janzen, and J. Chen, “Synthesis of Pd/Fe3O4 hybrid nanocatalysts with controllable interface and enhanced catalytic activities for CO oxidation,” The Journal of Physical Chemistry C, vol. 116, no. 23, pp. 12969–12976, 2012. View at Publisher · View at Google Scholar
  76. J. Xie, K. Chen, H. Y. Lee et al., “Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin αvβ3-rich tumor cells,” Journal of the American Chemical Society, vol. 130, no. 24, pp. 7542–7543, 2008. View at Publisher · View at Google Scholar
  77. E. Amstad, S. Zurcher, A. Mashaghi, J. Y. Wong, M. Textor, and E. Reimhult, “Surface functionalization of single superparamagnetic iron oxide nanoparticles for targeted magnetic resonance imaging,” Small, vol. 5, no. 11, pp. 1334–1342, 2009. View at Publisher · View at Google Scholar · View at Scopus